Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T21:55:06.444Z Has data issue: false hasContentIssue false

Anomalous Composition Dependence of Optical Energies of MBE-grown InGaN

Published online by Cambridge University Press:  01 February 2011

I. Fernandez-Torrente
Affiliation:
University of Strathclyde, Department of Physics, Glasgow, G4 0NG, Scotland, UK.
D. Amabile
Affiliation:
University of Strathclyde, Department of Physics, Glasgow, G4 0NG, Scotland, UK.
R. W. Martin
Affiliation:
University of Strathclyde, Department of Physics, Glasgow, G4 0NG, Scotland, UK.
K. P. O'Donnell*
Affiliation:
University of Strathclyde, Department of Physics, Glasgow, G4 0NG, Scotland, UK.
J.F.W. Mosselmans
Affiliation:
CLRC Daresbury Laboratories, Synchroton Radiation Department, Warrington WA4 4AD, England, UK
E. Calleja
Affiliation:
ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
F. B. Naranjo
Affiliation:
ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
Get access

Abstract

A direct comparison of the optical energies of MBE- and MOVPE-grown InxGa1-xN epilayers of similar InN content is performed for the first time. The InN fraction in the 7 MBE samples examined ranged from x ∼ 0.11 to x ∼ 0.35 while the range in available MOVPE epilayers is [0, 0.4]. Wavelength Dispersive X-ray (WDX) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies were used to measure composition and local structure (alloy character) of the samples. Cathodoluminescence (CL) spectroscopy in situ, ex situ photoluminescence (PL) mapping and large-area optical absorption spectroscopy were used to measure various optical energies. The composition dependence of the optical energies is determined by the growth method. The absorption bandgap and luminescence peak energies vary linearly with x for both growth methods, suggesting a near-zero value of the bowing parameter. But the energy intercept at zero InN content in MOVPE samples is close to the wurtzite-GaN bandgap of 3.4 eV at room temperature, as expected, while the equivalent for MBE samples falls near 3.2 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Institut Català de Nanotecnoloǵa-ICMAB, Campus de la UAB, E-08193 Bellaterra, Spain.

References

REFERENCES

1. Martin, R.W. et al., Appl. Phys. Lett., 74 263 (1999).Google Scholar
2. O'Donnell, K. P., Martin, R.W., Middleton, P.G., Phys. Rev. Lett., 82 237 (1999).Google Scholar
3. Davydov, V.Y. et al., phys. stat. sol. (b) 230 R4 (2002).Google Scholar
4. Wu, J. et al., Appl. Phys. Lett. 80 3967 (2002).Google Scholar
5. Bechstedt, F., Furthmuller, J., J. Cryst. Growth 246 315 (2002).Google Scholar
6. Naranjo, F. B. et al., Appl. Phys. Lett. 80 231 (2002)Google Scholar
7. Martin, R.W. et al., phys. stat. sol. (a) 192, 117 (2002).Google Scholar
8. O'Donnell, K. P. et al., phys. stat. sol. (b) 216 157 (1999).Google Scholar
9. O'Donnell, K. P. et al., J. Phys. C. 32 6977 (2001).Google Scholar
10. O'Donnell, K. P. et al., Mat. Res. Symp. Proc. 737 13 (2003)Google Scholar