Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T13:37:12.875Z Has data issue: false hasContentIssue false

Analysis of Human Spleen Contamination

Published online by Cambridge University Press:  01 February 2011

Martin Kopani
Affiliation:
martin.kopani@gmail.com, Comenius University, School of Medicine, Department of Pathology, Sasinkova 4, Bratislava, 811 08, Slovakia, +421-259357454, +421-259357592
Martin Weis
Affiliation:
martin.weis@stuba.sk, Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Department of Physics, Ilkovicova 3, Bratislava, 81219, Slovakia
Julius Dekan
Affiliation:
julius.dekan@stuba.sk, Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Department of Nuclear Physics, Bratislava, 81219, Slovakia
Jan Jakubovsky
Affiliation:
jan.jakubovsky@fmed.uniba.sk, Comenius University, School of Medicine, Department of Pathology, Sasinkova 4, Bratislava, 811 08, Slovakia
Marcel Miglierini
Affiliation:
marcel.miglierini@stuba.sk, Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Department of Nuclear Physics, Bratislava, 81219, Slovakia
Get access

Abstract

We identified both crystalline and amorphous phase of human spleen particles. The silicon particles in the spleen were 10-30 μm large. Silicon, silicon-aluminium and silicon-calcium particles by EDX were found. We assume that the silicon must enter the organism from the external environment and the presence of silicon in the human spleen is consequence of the cleaning function of human spleen.

Mössbauer spectroscopy of studied tissues revealed different phase of iron oxide in the human spleen. On the ground of this consideration we can claim all samples of investigated tissues exhibit presence of two different paramagnetic iron phases, both based on three-valent (Fe3+) atoms. Consequently only 4 different iron-oxides correspond with experimental results. Multielemental composition of iron particles was found by EDX analysis. We suppose that pH and time are significant factors influence biomineralization of iron in the human spleen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cowley, J.M., Janney, D.E., Gerkin, R.C., Buseck, P.R., J. Struct. Biol. 131, 210216 (2000)Google Scholar
2. Seldon, C., Owen, M., Hopkins, J.M., Peters, T.J., Br. J. Haematol. 44, 593603 (1980)Google Scholar
3. Weir, M.P., Gibson, J.F., Peters, T.J., Biochem. J. 223, 3138 (1984)Google Scholar
4. Ward, R.J., Legssyer, R., Henry, C., Crichton, R.R., J. Inorg. Biochem. 79, 311317 (2000)Google Scholar
5. Quintana, C., Cowley, J.M., Marhic, C., J. Struct. Biol. 147, 166178 (2004)Google Scholar
6. Weis, M., Gmucova, K., Nadazdy, V., Capek, I., Satka, A., Kopani, M., Cirak, J., Majkova, E., Electroanalysis 19, 13231326 (2007)Google Scholar
7. Kopani, M., Jakubovsky, J., Polak, S., Acta Phys. Slovaca 51, 339345 (2001)Google Scholar
8. Morales, M.P., Veintemillas-Verdaguer, S., Montero, M.I., Serna, C.J., Roig, A., Casas, L.I., Martínez, B., Sandiumenge, F., Chem. Mater. 11, (1999) 3058.Google Scholar
9. Parker, F.T., Foster, M.W., Margulies, D.T., Berkowitz, A.E., Phys. Rev. B 47, (1993) 7885.Google Scholar
10. Linderoth, S., Hendriksen, P.V., Bodker, F., Wells, S., Davies, K., Charles, S.W., M–rup, S., J. Appl. Phys. 75, (1994) 6583.Google Scholar
11. Mamiya, H. and Nakatani, I., J. Korean Magn. Soc. 5, 815 (1995).Google Scholar
12. Mamiya, H. and Nakatani, I., J. Appl. Phys. 81, 4733 (1997).Google Scholar
13. Dickson, D. P. E., Reid, N. M. K., Hunt, C., Williams, H. D., El-Hilo, M., and O'Grady, K., J. Magn. Magn. Mater. 125, 345 (1993).Google Scholar
14. Cornell, M., Schwertmann, U., The Iron Oxides, Wiley-VCH Verlag, pp. 149 (2003).Google Scholar
15. Chatellier, X., West, M. M., Rose, J., Fortin, D., Leppard, G. G., Ferris, F. G., Geomicrobiol. J. 21, 99112 (2004)Google Scholar
16. Fein, J. B., Scott, S., Rivera, N., Chem. Geol. 182. 265273 (2002)Google Scholar
17. Benning, L.G., Phoenix, V. R., Yee, N., Konhauser, K. O., Geochim. Cosmochim. Acta 68, 743757 (2004)Google Scholar
18. Borch, T., Masue, Y., Kukkadapu, R.K., Fendorf, S., Environ. Sci. Technol. 41, 166172 (2007)Google Scholar
19. Jeen, S.W., Jambor, J.L., Blowes, D.W., Gillham, R.W., Environ. Sci. Technol. 41, 19891994 (2007)Google Scholar
20. Cumplido, J., V. Barrón, Torrent, J., Clays Clay Miner. 48, 503510 (2000)Google Scholar
21. Hansel, C.M., Benner, S.G., Fendorf, S., Environ. Sci. Technol. 39, 71477153 (2005)Google Scholar
22. Liu, H., Li, P., Zhu, M., Wei, Y., Sun, Y., Yuhan, , J. Solid State Chem. 180, 21212128 (2007)Google Scholar
23. Meyrick, D., Webb, J., Cole, C., Inorg. Chim. Acta 339, 481487 (2002)Google Scholar
24. Beaumont, C. and Canonne-Hergaux, F., Transfus. Clin. Biol. 12, 123–30 (2005)Google Scholar