Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T01:49:55.604Z Has data issue: false hasContentIssue false

Analysis of a TEOS/Oxygen Plasma: Influence of Energy and Particle Flux on the Deposition Parameters

Published online by Cambridge University Press:  10 February 2011

M. L. Pereira da Silva
Affiliation:
Laboratório de Sistemas Integráveis Departamento de Engenharia Eletrônica USP, SP, BRAZIL
A. N. Rodrigues da Silva
Affiliation:
Laboratório de Sistemas Integráveis Departamento de Engenharia Eletrônica USP, SP, BRAZIL
J. J. Santiago-Aviles
Affiliation:
University of Pennsylvania, Dept. of Electrical Engineering, 200 S, 33rd. St. Philadelphia, PA 19104, santiago@ee.upenn.edu
Get access

Abstract

In this work we looked at deposition parameters such as rate and film microstructure during the plasma enhanced CVD processing of TEOS {Si (OCH2 CH3)4) + O2. This is a multi-component oxide due to the inevitable accidental inclusion of carbonatious contaminants. We decided to characterize the plasma parameters, namely the electron energy (from 50 to 600 eV), and the flux of the reactive species. The deposition chamber was modified by the introduction of a stainless steel tubular ring between the electrodes, such that when a positive bias is applied it is possible to inject electrons into the plasma. A dual role for the tubular ring is the transport of oxygen to different locations in the plasma, and to monitor the influence of the oxygen flux on deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Petersen, K., "MEMS: What lies ahead?”, Digest of Technical papers, Transducers '95, Eurosensors IX, June 25 - 29, 1995, Stockholm, Sweden, Vol. 1, 1995, 894897.Google Scholar
2 Heuberger, A., "Silicon Microsystems”, Microelectronic Engineering 21 445458 (1993).Google Scholar
3 Zemel, J. N. Furlan, e R., “Microfluidics”, Chapter 12 of “Handbook Of Chemical and Biological Sensors”, Taylor, Richard F., Schultz, Jerome S., Ed. Institute of Physics Publishing, Bristol and Philadelphia,, pp. 317347, (1996).Google Scholar
4 Chin, L., Ven, E. P. van de, Solid State Technol., April, 119 (1988).Google Scholar
5 Magnella, C. G., Ingwersen, T., V-MIC Conf. Proc., June, 366 (1988)Google Scholar
6 Silva, M. L. P., Cardoso, A. R., Revista Brasileira de Aplicações de vácuo, 16, 2 (1997) 39 Google Scholar
7 Silva, M. L. P., Cardoso, A. R., Santiago- Aviles, J. J., MRS Fall Meeting, 1997 Google Scholar
8 Cardoso, A. R., Silva, M. L. P., Santiago- Aviles, J.J., MRS Fall Meeting, 1997 Google Scholar
9 Silva, M., Riveros, J.M., Int. J. Mass Sprectrom. Ion Process, 165/166 8395 (1997).Google Scholar
10 Morgon, N. H., Argenton, A. B., Silva, M. L. P., Riveros, J. M., J. Am. Chem. Soc., 119, 1708 (1997).Google Scholar
11 Silva, M., Riveros, J.M., J. Mass Spectrom. 30(5), 733740 (1995)Google Scholar
12 Silva, M., Riveros, J.M., Proceedings of X SBMicro, 1, 567576 (1995).Google Scholar