Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T20:54:40.243Z Has data issue: false hasContentIssue false

An Experimental and Simulation Study of Arsenic Diffusion Behavior in Point Defect Engineered Silicon

Published online by Cambridge University Press:  01 February 2011

Ning Kong
Affiliation:
kongning@mail.utexas.edu, UT-Austin, Microelectronics Research Center, 10100 Burnet Rd. Bldg 160, Austin, TX, 78758, United States
Taras A. Kirichenko
Affiliation:
Taras.Kirichenko@freescale.com, Freescale Semiconductor Inc., 3501 Ed Bluestein Blvd, MD K10,, Austin, TX, 78721, United States
Gyeong S. Hwang
Affiliation:
gshwang@che.utexas.edu, The University of Texas at Austin, Department of Chemical Engineering, Austin, TX, 78712, United States
Foisy C. Mark
Affiliation:
Mark.Foisy@freescale.com, Freescale Semiconductor Inc., 3501 Ed Bluestein Blvd, MD K10, Austin, TX, 78721, United States
Steven G. H. Anderson
Affiliation:
Steven.g.h.Anderson@freescale.com, Freescale Semiconductor Inc., 3501 Ed Bluestein Blvd, MD K10,, Austin, TX, 78721, United States
Sanjay K. Banerjee
Affiliation:
banerjee@ece.utexas.edu, The University of Texas at Austin, Microelectronics Research Center, Austin, TX, 78758, United States
Get access

Abstract

We report that arsenic diffusion can be enhanced and retarded by surrounding interstitial rich and vacancy rich environments created by Si point defect engineering implant. The enhancement and retardation can be attributed to the dominant arsenic interstitial diffusion mechanism during post-implant anneal. Kinetic Monte Carlo simulations with newly implemented models show good match with experiments. Our study suggests the importance of arsenic interstitial mechanism and a possible approach for n-type ultra shallow junction fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sultan, A., Banerjee, S. K., List, S., and McNeil, V., J. Appl. Phys. 83, 8046 (1998).Google Scholar
2. Venezia, V. C., Haynes, T. E., Agarwal, A., Pelaz, L., Gossmann, H.-J., Jacobson, D. C., and Eaglesham, D. J., Appl. Phys. Lett. 74, 1299 (1999).Google Scholar
3. Cowern, N. E. B., Smith, A. J., Colombeau, B., Gwilliam, R., Sealy, B. J., and Collar, E. J. H., Tech. Dig. - Int. Electron Devices Meet. 2005, 968.Google Scholar
4. Kalyanaraman, R., Haynes, T. E., Holland, O. W., Gossmann, H.-J. L., C. S.Rafferty, and Gilmer, G. H., Appl. Phys. Lett. 79, 1983 (2001).Google Scholar
5. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 298 (1989).Google Scholar
6. Ural, A., Griffin, P. B., and Plummer, J. D., J. Appl. Phys. 85, 6440 (1999).Google Scholar
7. Ramamoorthy, M. and Pantelides, S. T., Phys. Rev. Lett. 76, 4753 (1996).Google Scholar
8. Mathiot, D. and Pifster, J. C., Appl. Phys. Lett. 42, 1043 (1983).Google Scholar
9. Solmi, S., Ferri, M., Bersani, M., Guibertoni, D., and Soncini, V., J. Appl. Phys. 94, 4950 (2003).Google Scholar
10. Harrison, S. A., Edgar, T. F., and Hwang, G. S., Appl. Phys. Lett. 87, 231905 (2005).Google Scholar
11.Simulation by UT-MARLOWE code, distributed by the University of Texas at Austin.Google Scholar
12.Simulation by DADOS distributed by Professor Martin Jaraiz from University of ValladolidGoogle Scholar
13. Harrison, S. A., Edgar, T. F., and Hwang, G. S., Electrochemical and Solid-State Letters 9(12) G354–G357 (2006)Google Scholar
14. Xie, J. J. and Chen, S. P., Phys. Rev. Lett. 83, 1795 (1999).Google Scholar