Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:49:10.743Z Has data issue: false hasContentIssue false

An Electrostatic Induction Model for Fluoroalkane Polymers

Published online by Cambridge University Press:  01 January 1992

Jeffrey D. Carbeck
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Gregory C. Rutledge
Affiliation:
Department of Chemical Engineering
Get access

Abstract

An electrostatic induction model based on atom-centered partial charges is presented. In this representation, the local electric field is evaluated at each bond center. The bonds are treated as entities polarizable only in a direction parallel to the bond itself by means of a scalar bond polarization parameter. The resulting induced charge separation contributes to the local electric field experienced by neighboring bonds, resulting in a final set of charges which are calculated self-consistently. The model provides a reasonable approximation to dipole moment vectors and polarizabilities of small molecule fluoroalkanes. The results are discussed in comparison with other induction models. This model fits well into the framework of established atomistic potential energy calculations using an atom-centered partial charge representation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rowell, R. L. and Stein, R. S., J. Chem. Phys. 47, 2985 (1967).Google Scholar
2. Applequist, J., Carl, J. and Fung, K., J. Am. Chem. Soc. 94, 2952 (1972).Google Scholar
3. Miller, C. K., Orr, B. J. and Ward, J. F., J. Chem. Phys. 67, 2109 (1977); J. Chem. Phys. 74, 4858 (1981).Google Scholar
4. Boyd, R. H. and Kesner, L., J. Chem. Phys. 72, 2179 (1980).Google Scholar
5. Boyd, R. H. and Kesner, L., Macromolecules., 20, 1802 (1987).Google Scholar
6. Miller, K. J., J. Am. Chem. Soc. 112, 8543 (1990).Google Scholar
7. Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B., Molecular Theory of Gases and Liquids, chapter 12 (Wiley & Sons, NewYork, 1954).Google Scholar
8. Aval, G. M., Rowell, R. L. and Barrett, J. J., J. Chem. Phys. 57, 3104 (1972).Google Scholar
9. Powers, J., Keedy, D. A. and Stein, R. S., J. Chem. Phys. 35, 376 (1961).Google Scholar
10. Hellwege, K. H., Eds., , Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. Group II, vol. 14, (Springer-Verlag, Heidelberg, 1982).Google Scholar
11. Butcher, S. S., Cohen, R. A. and Rounds, T. C., J. Chem. Phys. 54, 4123 (1971).Google Scholar
12. Ab initio HF-SCF calculations using GAMESS and a 6-31G** basis set.Google Scholar
13. Watson, H. and Ramaswamy, K. L., Proc. Roy. Soc. Ser. A 156, 144 (1936).Google Scholar
14. Blythe, A. R., Lambert, J. D., Petter, J. D. and Spoel, H., Proc. R. Soc. London, Ser. A 255, 427 (1960).Google Scholar
15. Bogaard, M. P., Buckingham, A. D., Pierens, R. K. and White, A. H., J. Chem. Soc. Faraday Trans. I 74, 3008 (1978).Google Scholar
16. Burnham, A. K., Buxton, L. W. and Flygare, W. H., J. Chem. Phys. 67, 4990 (1977).Google Scholar
17. Driesbach, R. R., Eds., Physical Properties of Chemical Compounds III. Series 29 (American Chemical Society, Washington DC, 1961).Google Scholar
18. Ramaswamy, K. L., Proc. Indian. Acad. Sci., Sect. A 4, 675 (1936).Google Scholar
19. Smyth, C. P. and McAlpine, K. B., J. Chem. Phys. 2, 499 (1934).Google Scholar
20. Bridge, N. J. and Buckingham, A. D., Proc. R. Soc. London, Ser. A 295, 334 (1966).Google Scholar
21. Baas, F. and van den Hout, K. D., Physica (Utrecht) A 95, 597 (1979).Google Scholar
22. Ramaswamy, K. L., Proc. Indian. Acad. Sci., Sect. A 2, 630 (1935).Google Scholar
23. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1989).Google Scholar
24. Dixon, D. A., J. Phys. Chem. 92, 86 (1988).Google Scholar