Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T03:08:59.409Z Has data issue: false hasContentIssue false

Aluminum Nitride Thin Films Grown by Plasma-Assisted Pulsed Laser Deposition on Si Substrates

Published online by Cambridge University Press:  10 February 2011

M. Okamoto
Affiliation:
Department of Electrical Engineering, Osaka University, 2–1 Yamada-Oka, Suita, Osaka 565, Japan
T. Ogawa
Affiliation:
Department of Electrical Engineering, Osaka University, 2–1 Yamada-Oka, Suita, Osaka 565, Japan
Y. Mori
Affiliation:
Department of Electrical Engineering, Osaka University, 2–1 Yamada-Oka, Suita, Osaka 565, Japan
T. Sasaki
Affiliation:
Department of Electrical Engineering, Osaka University, 2–1 Yamada-Oka, Suita, Osaka 565, Japan
Get access

Abstract

The smooth and highly oriented AlN films were obtained using pulsed laser deposition from sintered AlN target in a nitrogen ambient. The XRD investigation revealed that highly oriented AlN thin films along the c-axis (AlN (0002)) normal to the substrate were obtained both on Si(111) and on Si(100) substrates. The (0002) x-ray peak width became narrower with increasing substrate temperature. The CL investigation showed that AlN films at high laser energy density (Ed) indicated CL peak at shorter wavelength (306nm) than that at low Ed (394nm). N/Al atomic ratio in AlN films grown at high Ed also increased as comparison with the films grown at low Ed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
2. Khan, M. A., Kuznia, J. N., Skogman, R. A., Olson, D. T., Milian, M. M., and Choyke, W. J., Appl. Phys. Lett. 61, 2539 (1992).Google Scholar
3. Kung, P., Saxler, A., Zhang, X., Walker, D., Wang, T. C., Furguson, I., and Razeghi, M., Appl. Phys. Lett. 66, 2958(1995).Google Scholar
4. Chaudhuri, J., Thokala, R., Edgar, J. H., and Sywe, B. S., J. Appl. Phys. 77, 6263 (1995).Google Scholar
5. Kumar, S. and Tansley, T. L., Jpn. J. Appl. Phys. 34, 4154 (1995).Google Scholar
6. Stevens, K. S., Ohtani, A., Kinniburgh, M., and Beresford, R., Appl. Phys. Lett. 65, 321 (1994).Google Scholar
7. Norton, M. G., Kotula, P. G., and Carter, C.B., J. Appl. Phys. 70, 2871 (1991).Google Scholar
8. Seki, K., Xu, X., Okabe, H., Frye, J. M., and Halpern, J. B., Appl. Phys. Lett. 60, 2234 (1992).Google Scholar
9. Vispute, R. D., Narayan, J., Wu, H., and Jagannadham, K., J. Appl. Phys. 77, 4724 (1995).Google Scholar
10. Lin, W. T., Meng, L. C, Chen, G. J., and Liu, H. S., Appl. Phys. Lett. 66, 2066 (1995).Google Scholar
11. Vispute, R. D., Wu, H., and Narayan, J., Appl. Phys. Lett. 67, 1549 (1995).Google Scholar
12. Ogawa, T., Okamoto, M., Mori, Y., and Sasaki, T. in III-Nitride, SiC and Diamond Materials for Electronic Devices, edited by Gaskill, D. K., Brandt, C. D., Nemanich, R. J. (Mater. Res. Soc. Proc. 423, San Francisco, CA, 1996) pp. 391396.Google Scholar
13. Ogawa, T., Okamoto, M., Mori, Y., Hatta, A., Ito, T., Sasaki, T., and Hiraki, A., Diamond Films and Technology 6, 8794 (1996).Google Scholar
14. Cheung, J. T. and Sankur, H., CRC Crit. Rev. in Solid State and Mater. Sciences 15 (1), 63109 (1988).Google Scholar