Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-22T12:52:43.589Z Has data issue: false hasContentIssue false

Aluminium-Transition Metal Thin-Film Reactions

Published online by Cambridge University Press:  21 February 2011

E. G. Colgan
Affiliation:
QIBM East Fishkill, General Technology Division, Hopewell Junction, NY 12533
J. W. Mayer
Affiliation:
Department of Material Science and Engineering, Cornell University, Ithaca, NY 14853
Get access

Abstract

A systematic study of Al/metal reactions has been performed. The thin-film interactions of Al with refractory metals (Ti, V, Ta, Cr, Mo, W and Co) and near-noble metals (Ni, Pd, and Pt) have been investigated. The initial aluminide phases to grow are the Al-rich phases: TiAl3, Val3, TaAl3, Cr2Al13, MoAl12, Wal12, Co2Al9, NiAl3, Pd2Al3, and Pt2Al3 at temperatures between 225 and 525°C. With the exceptions of Val3, Pd2Al3, and Pt2Al3. these are the most Al-rich phases on the phase diagrams. Marker experiments were performed and Al was the dominant diffusing species during the growth of these phases, TiAl3, Val3, Cr2Al3, MoAl12, Co2Al2, NiAl3, Pd2Al3, and Pt2AI3. Consistent with the faster Al diffusion, which provides a greater supply of Al to the growing interface, is the growth of the most Al-rich phase initially. For the exceptions to this rule, Val3, Pd2AI3, and Pt2 Al3, the complexity of the Al-rich V, Pd, and Pt end phases may have hindered nucleation, resulting in the growth of the observed phases. The subsequent phase formation was examined in the Ni-, Pd-, and Pt-Al systems. After initial phase formation consumed all the Al or metal, subsequent phases formed in accordance with the overall stoichiometry. The results of this study, along with a brief literature review, are presented and the generalized behavior of Al/transition metal reactions discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fraser, D.B. in VLSI Technology, edited by Sze, S.M. (McGraw-Hill, New York, 1983) p.3k7.Google Scholar
2. Rosenberg, R., Sullivan, M.J., and Howard, J.K. in Thin Films- Interdiffusion and Reaction, edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (John Wiley, New York, 1978) Chap. 2.Google Scholar
3. Nicolet, M-A. and Bartur, M., J. Vac. Sci. Technol. 19, 786 (1981).Google Scholar
4. Tu, K. N. and Mayer, J.W. in Thin Films- Interdeffusion end Reaction, edited by Poate, J.M., Tu, K. N., and Mayer, J.W. (John Wiley, New York, 1978) p.382.Google Scholar
5. Nicolet, M A. and Lau, S.S. in VLSI Electronics Microstrijcture Science, edited by Einspruch, N.G. and Larrabee, G.B. (Academic Press, New York, 1983), Vol.6, Chap. 6.Google Scholar
6. Murarka, S.P., Silicides for VLSI Applications, (Academic Press, New York, 1983).Google Scholar
7. Beni, R.W., AppI. Phys;. Left. 41, 529 (1982), where the rule should read liquidius rather then eutectic, private communication from R.W. Benè).CrossRefGoogle Scholar
8. Baglin, J.E.E. and d'Heurle, F.M. in Ion Beam Surface Layer Analysis, edited by Meyer, O., Linker, G., and Kappeler, F. (Plenum, New York, 1976) Vol.1, p. 385.Google Scholar
9. Nastasi, M., Hung, L.S., and Mayer, J.W., Appl. Phys. Lett. 43, 831 (1983).CrossRefGoogle Scholar
10. Zhao, X-A., Ma, E., and Nicolet, M-A., Material Letts. 5, 200 (1987).CrossRefGoogle Scholar
11. Zhao, X-A., Yang, H-Y., Ma, E., and Nicolet, M-A., J. Appl. Phys. 62, 1821 (1987).CrossRefGoogle Scholar
12. Castleman, L.S. and Seigle, L.L., Trans TMS-AIME 212, 589 (1958).Google Scholar
13. Janssen, M.M.P. and Rieck, G.D., Trans. TMS-AIME 239, 1372 (1967).Google Scholar
14. Shankar, S. and Seigle, L.L., Met. Trans. 9A, 1467 (1978).Google Scholar
15. Liu, J.C., Mayer, J.W., and Barbour, J.C., Submitted to J. Appl. Phys.Google Scholar
16. Liu, S.C., Mayer, J.W., and Barbour, J.C., Submitted to J. Appl. PhysGoogle Scholar
17. Colgan, E.G., Nastasi, M., and Mayer, J.W., J. Appl. Phys. 58, 4125 (1985).Google Scholar
18. Colgan, E.G. and Mayer, J.W., in Thin Films- Interfaces and Phenomena, edited by Nemanich, R.J., Ho, P.S., and Lau, S.S. (North-Holland, New York, 1986), p. 121.Google Scholar
19. Colgan, E.G. and Mayer, J.W., Nucl. Instr. and Meth. B 17, 242 (1986).Google Scholar
20. Colgan, E.G. and Mayer, J.W., J. Mater. Res. 1, 786 (1986).CrossRefGoogle Scholar
21. Colgan, E.G., PhD Thesis, (Cornell University, Ithaca NY, 1987).Google Scholar
22. Colgan, E.G. and Mayer, J.W., Unpublished.Google Scholar
23. Colgan, E.G., J. Appl. Phys. 62, 2269 (1987).Google Scholar
24. Colgan, E.G., J. Appl. Phys. 62, 1224 (1987).Google Scholar
25. Colgan, E.G., Palmstrom, C.J., and Mayer, J.W., J. Appl. Phys. 58, 1838 (1985).Google Scholar
26. Colgan, E.G., Li, C-Y., and Mayer, J.W., Appl. Phys. Lett. 51, 424 (1987).Google Scholar
27. Colgan, E.G., Li, C-Y., and Mayer, J.W., J. Hater. Res. 2, 557 (1987).Google Scholar
28. Howard, J.K., Lever, R.F., Smith, P.J., and Ho, P.S., J. Vac. Sci. Technol. 13, 68 (1976).Google Scholar
29. Huang, H-C.W., and Wittmer, M., Mat. Res. Soc. Symp. 25, 157, (Elsevier, New York, 1984).Google Scholar
30. Lever, R.F., Howard, J.K., Chu, W.K., and Smith, P.J., J. Vac. Sci. Technol. 14, 158 (1977).Google Scholar
31. Ball, R.K. and Todd, A.G., Thin Solid Films 149, 269 (1987).CrossRefGoogle Scholar
32. Whittmer, M., Huang, H-C.W., and LeGoues, F., Phil. Mag. A 53, 687 (1986).CrossRefGoogle Scholar
33. Howard, J.K., White, J.F., and Ho, P.S., J. Appl. Phys. 49, 4083 (1978).Google Scholar
34. Nakamura, K., Lau, S.S., Nicolet, M-A., and Mayer, J.W., Appl. Phys. Lett. 28, 277 (1976).Google Scholar
35. Krafcsik, I., Gyulai, J., Palmström, C.J., and Mayer, J.W., Appl. Phys. Lett. 43, 1015 (1983).Google Scholar
36. Tardy, J. and Tu, K.N., Phys. Rev. B 32, 2070 (1985).Google Scholar
37. Wittmer, M., LeGoues, F., and Huang, H-C.W., Electrochem. Soc. 132, 1450 (1985).Google Scholar
38. Zhao, X-A., Thuillard, M., and Nicolet, M-A., Appl. Phys. A, submittedGoogle Scholar
39. Zhao, X-A., So, F.C.T., and Nicolet, M-A., J. Appl. Phys., to appear April 1988.Google Scholar
40. Eizenberg, M., Thompson, R.D., and Tu, K.N., J. Appl. Phys. 53, 6891 (1982).Google Scholar
41. Finstad, T.G., Salomonsen, G., Norman, N., Johannessen, J.S., Thin Solid Films 114, 271 (1984).Google Scholar
42. Liaw, J-W., Liu, Y-C., Maa, J-S., Hsu, W-S., Shen, W-J., and Hsiung, S-K., Ts'ai Liao K'o Hsueh 12, 36 (1980).Google Scholar
43. Howard, J.K., Chu, W.K., and Lever, R.F., Ion Beam Surface Layer Analysis, Vol.1, edited by Meyer, O., Linker, G., and Käppeler, F., (Plenum Press, New York, 1976) p.125.Google Scholar
44. Chamberlain, M.B., J. Vac. Sci. Technol. 16, 339 (1979).Google Scholar
45. vanGurp, G.J., Daams, J.L.C., vanOostrom, A., Augustus, L.J.M., and Tamminga, Y., J. Appl. Phys. 50, 6915 (1979).Google Scholar
46. Köster, U., Ho, P.S., and Ron, M., Thin Solid Films 67, 35 (1980).CrossRefGoogle Scholar
47. Murarka, S.P., Blech, I.A., and Levinstein, N.J., J. Appl. Phys. 47, 5157 (1976).Google Scholar
48. Zhao, X-A., Ma, E., Yang, H-Y., and Nicolet, M-A., Thin Sofid Films 153, 379 (1987).Google Scholar