Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-18T18:52:20.730Z Has data issue: false hasContentIssue false

Alternative Chemistries for Mocvd Growth of III/V Materials

Published online by Cambridge University Press:  28 February 2011

R.M. Lum
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
J.K. Klingert
Affiliation:
AT&T Bell Laboratories, Crawfords Corner Rd., Holmdel, NJ 07733
Get access

Abstract

Alkyl substituted arsine compounds, RnAsH3–α are attractive alternatives to arsine, AsH3. for metalorganic chemical vapor deposition (MOCVD) of GaAs-based compounds because they are typically low vapor pressure liquids which can be stored and handled more safely than the high-pressure gas cylinders used for AsH3. Despite their increased safety, the alkylarsines have not been widely used due to carbon incorporation problems and high background doping levels in the deposited films. To determine the impact of alternative growth chemistries on MOCVD processes we have investigated the thermochemistry controlling the decomposition of AsH3 and its alkyl substitutes. Data are presented on the thermal stability of the Ascompounds, their resulting growth properties, and the composition and formation kinetics of the volatile products formed during thermal decomposition in an H2 ambient. The gas phase reactions controlling decomposition are identified. The implications of our results for CVD growth models and the potential of alkylarsine compounds for different CVD processes are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vook, D.W., Reynolds, S., and Gibbons, J.S., Appl. Phys. Lett. 50, 1386 (1987).10.1063/1.97865Google Scholar
2. Lum, R.M., Klingert, J.K., and Kisker, D.W., J. Appi. Phys. 66,652 (1989).10.1063/1.343532Google Scholar
3. Chen, C.H., Reihlen, E.R., and Stringfellow, G.B., J. Cryst. Growth 96,497 (1989).10.1016/0022-0248(89)90044-4Google Scholar
4. Bhat, R., Koza, M.A., and Skromme, B.J., Appl. Phys. Lett. 50, 1194 (1987).10.1063/1.97908Google Scholar
5. Speckman, D.M. and Wendt, J.P., Appl. Phys. Lett. 50, 676 (1987).10.1063/1.98063Google Scholar
6. Lum, R.M., Klingert, J.K., Wynn, A.S., and Lamont, M.G., Appl. Phys. Lett. 52, 1475 (1988).10.1063/1.99103Google Scholar
7. Fujita, S., Uemoto, Y., Araki, S., Imaizumi, M., Takeda, Y., and Sasaki, A., Jpn. J. Appi. Phys. 27, 1151 (1988).10.1143/JJAP.27.1151Google Scholar
8. Speckman, D.M. and Wendt, J.P., Appl. Phys. Lett. 56, 1134 (1990).10.1063/1.102541Google Scholar
9. Chen, C.H., Larsen, C.A., and Stringfellow, G.B., Appl. Phys. Lett. 50, 218 (1987).10.1063/1.97666Google Scholar
10. Lum, R.M., Klingert, J.K., and Lamont, M.G., Appl. Phys. Lett. 50, 284 (1987).10.1063/1.98226Google Scholar
11. Haacke, G., Watkins, S.P., and Burkhard, H., Appl.Phys. Lett. 56,478 (1990).10.1063/1.102771Google Scholar
12. Lum, R.M., Klingert, J.K. and Lamont, M.G., J. Cryst. Growth 89, 137 (1988).10.1016/0022-0248(88)90083-8Google Scholar
13. Lum, R.M., Klingert, J.K., Kisker, D.W., Abys, S.M., and Stevie, F.A., J. Cryst. Growth 93, 120 (1988).10.1016/0022-0248(88)90516-7Google Scholar
14. Haacke, G., Watkins, S.P., and Burkhard, H., Appl. Phys. Lett. 54, 2029 (1989).10.1063/1.101182Google Scholar
15. Lum, R.M., Klingert, J.K., Ren, F., and Shah, N.J., Appl. Phys. Lett. 56, 379 (1990).10.1063/1.102791Google Scholar
16. Lee, P.W., Omstead, T.R., McKenna, D.R., and Jensen, K.F., J. Cryst. Growth 85, 165 (1988).10.1016/0022-0248(87)90218-1Google Scholar
17. Lee, P.W., Omstead, T.R., McKenna, D.R., and Jensen, K.F., J. Cryst. Growth 93, 134 (1988).10.1016/0022-0248(88)90518-0Google Scholar
18. Larsen, C.A., Buchan, N.I., and Stringfellow, G.B., Appl. Phys. Lett. 52,480 (1988).10.1063/1.99450Google Scholar
19. Johnson, E.T., unpublished.Google Scholar
20. Larsen, C.A., Buchan, N.I., Li, S.H., and Stringfelow, G.B., J. Cryst. Growth 93, 15 (1988).10.1016/0022-0248(88)90499-XGoogle Scholar
21. Ritter, D., Panish, M.B., Hamm, R.A., Gershoni, D., and Brener, I., Appl. Phys. Lett. 56, 1448 (1990).10.1063/1.102494Google Scholar
22. Buckley, D.N., Appl. Phys. Lett. 55,2514 (1989).10.1063/1.101993Google Scholar