Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-01T01:16:57.786Z Has data issue: false hasContentIssue false

Alkanethiol Mediated Release of Surface Bound Nanoparticles Fabricated by Nanosphere Lithography

Published online by Cambridge University Press:  01 February 2011

Jing Zhao
Affiliation:
j-zhao4@northwestern.edu, Northwestern University, Chemistry, 2145 Sheridan Road, Evanston, IL, 60201, United States, 847-491-2952
Amanda J Haes
Affiliation:
a-haes@cox.net, Naval Research Laboratory, United States
Xiaoyu Zhang
Affiliation:
x-zhang2@northwestern.edu, Northwestern University, Chemistry, United States
Shengli Zou
Affiliation:
shengli@chem.northwestern.edu, Northwestern University, Chemistry, United States
Erin M Hicks
Affiliation:
mclele@alum.rpi.edu, Northwestern University, Chemistry, United States
George C Schatz
Affiliation:
schatz@chem.northwestern.edu, Northwestern University, Chemistry, United States
Richard P Van Duyne
Affiliation:
vanduyne@chem.northwestern.edu, Northwestern University, Chemistry, United States
Get access

Abstract

This work presents an innovative approach to produce monodisperse solution-phase triangular silver nanoparticles with well-controlled geometry. Ag nanotriangles are fabricated by nanosphere lithography (NSL), functionalized with alkanethiol molecules and then released from the substrate into solution. The resulting single isolated nanoparticles are subsequently asymmetrically functionalized with alkanedithiol molecules to form dimer pairs. The optical properties of the Ag nanoparticles have been measured using UV-Vis spectroscopy while their structural properties have been characterized using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Theoretical calculations based on Mie theory and the Discrete Dipole Approximation (DDA) method have been done to interpret the optical properties of the released Ag nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Haynes, C. L. and Duyne, R. P. Van, J. Phys. Chem. B 105, 5599 (2001)Google Scholar
2 Kreibig, U., Gartz, M. and Hilger, A., Ber. Bunsen-Ges. 101, 1593 (1997)Google Scholar
3 El-Sayed, M. A., Acc. Chem. Res. 34, 257 (2001)Google Scholar
4 Jensen, T. R., Kelly, K. L., Lazarides, A. and Schatz, G. C., Journal of Cluster Science 10, 295 (1999)Google Scholar
5 Zhang, X. Y., Hicks, E. M., Zhao, J., Schatz, G. C. and Duyne, R. P. Van, Nano Lett 5, 1503 (2005)Google Scholar
6 Haynes, C. L., McFarland, A. D., Zhao, L. L., Duyne, R. P. Van, Schatz, G. C., Gunnarsson, L., Prikulis, J., Kasemo, B. and Kall, M., J. Phys. Chem. B 107, 7337 (2003)Google Scholar
7 Marshall, M. T., McDonald, M. L., Tong, X., Yeadon, M. and Gibson, J. M., Rev Sci Instrum 69, 440 (1998)Google Scholar
8 Hulteen, J. C. and Duyne, R. P. Van, J. Vac. Sci. Technol. A 13, 1553 (1995)Google Scholar
9 Fischer, U. C. and Zingsheim, H. P., J Vac Sci Technol 19, 881 (1981)Google Scholar
10 Deckman, H. W. and Dunsmuir, J. H., Appl Phys Lett 41, 377 (1982)Google Scholar
11 Jensen, T. R., Malinsky, M. D., Haynes, C. L. and Duyne, R. P. Van, J. Phys. Chem. B 104, 10549 (2000)Google Scholar
12 Mie, G., Annalen der Physik (Weinheim, Germany) 25, 377 (1908)Google Scholar
13 Draine, B. T. and Flatau, P. J., J. Op. Soc. Am. A 11, 1491 (1994)Google Scholar
14 Riboh, J. C., Haes, A. J., McFarland, A. D., Yonzon, C. R. and Duyne, R. P. Van, J. Phys. Chem. B 107, 1772 (2003)Google Scholar
15 Haes, A. J., Zhao, J., Zou, S. L., Own, C. S., Marks, L. D., G. C. Schatz and Duyne, R. P. Van, J. Phys. Chem. B 109, 11158 (2005)Google Scholar