Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T18:10:06.006Z Has data issue: false hasContentIssue false

Ageing of Eurobitum Bituminised Radioactive Waste under Gamma Irradiation

Published online by Cambridge University Press:  21 March 2011

Fabian Rorif
Affiliation:
SCK•CEN, the Belgian Nuclear Research Centre, Foundation of Public Utility Boeretang 200, 2400 Mol, Belgium
Elie Valcke
Affiliation:
SCK•CEN, the Belgian Nuclear Research Centre, Foundation of Public Utility Boeretang 200, 2400 Mol, Belgium
Patrick Boven
Affiliation:
SCK•CEN, the Belgian Nuclear Research Centre, Foundation of Public Utility Boeretang 200, 2400 Mol, Belgium
Hans Ooms
Affiliation:
SCK•CEN, the Belgian Nuclear Research Centre, Foundation of Public Utility Boeretang 200, 2400 Mol, Belgium
Jozef Peeters
Affiliation:
SCK•CEN, the Belgian Nuclear Research Centre, Foundation of Public Utility Boeretang 200, 2400 Mol, Belgium
Steven Smets
Affiliation:
SCK•CEN, the Belgian Nuclear Research Centre, Foundation of Public Utility Boeretang 200, 2400 Mol, Belgium
Get access

Abstract

The extent of the physico-chemical processes of concern in the study on the acceptability of the Belgian Eurobitum bituminised waste for underground disposal will depend on the degree ofageing of the bituminous matrix. Therefore, the ageing of non-radioactive simulates of Eurobitum under gamma irradiation was studied both in the presence and absence of oxygen. Chemical changes in the bitumen structure were measured in the mid-infrared region with the attenuated total reflectance infrared technique (ATR/FTIR) and evaluation of the peaks at 1700 cm−1 (C=O) and 1600 cm−1 (C=C). Even for the highest total absorbed doses (∼800 kGy at ∼150 Gy/h), the effect of the irradiation in Eurobitum was found to be small and was, in any case, smaller than for samples heated for three hours at 130°C in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eschrich, H., “Properties and Long-term Behaviour of Bitumen and Radioactive Waste-Bitumen Mixtures” (1980). Report Eurochemic 80-14.Google Scholar
2. Collective report, “SAFIR 2: Safety Assessment and Feasibility Interim Report” (2001). Report NIROND (ONDRAF/NIRAS) 2001-06 (Brussels).Google Scholar
3. Marivoet, J., “Description on the normal evolution scenario” (1999). SCK•CEN Report R-3328, Mol, Belgium.Google Scholar
4. Valcke, E., Sneyers, A., Iseghem, P. Van, “Characterization and compatibility with the disposal medium of Eurochemic reprocessing waste forms – Radiolytic Degradation of Eurobitum” (2002). SCK•CEN Report R-3633, Mol, Belgium.Google Scholar
5. Sneyers, A. and Iseghem, P. Van, in Scientific Basis for Nuclear Waste management XXI, ed. McKinley, I.G. and McCombie, C., (Mat. Res. Soc. Proc. 506, Pittsburgh, Pennsylvania, 1998) pp. 565572.Google Scholar
6. Morgan, P. and Mulder, A., The Shell Bitumen Industrial Handbook (Shell Bitumen, 1995).Google Scholar
7. Bukka, K., Miller, J.D., Hanson, F.V. et al. , Fuel 73, 257268 (1994).Google Scholar
8. Cunningham, J. and Heal, H.C., Trans. Faraday Soc., 54, 13551369 (1958).Google Scholar
9. Swallow, J.A., Radiation chemistry: an introduction (Longman Group Ltd, London, 1973).Google Scholar
10. Fernandez, A. Fernandez, “Gamma irradiation facilities at SCK•CEN for radiation tolerance assessment. From space applications to fusion environments.” (2002). SCK•CEN Report R-3641, Mol, Belgium.Google Scholar
11. Kowa, S., Kerner, N., Hentschel, D., Kluger, W., “Untersuchungen zur Alpharadiolyse von LAW/MAW-Bitumenprodukten aus der Wiederaufarbeitung” (1983). KfK Report 3241.Google Scholar
12. Weetjens, E., “Characterisation and compatibility with the disposal medium of Eurochemic reprocessing waste forms” (2003). SCK•CEN Report R-3767, Mol, Belgium.Google Scholar
13. Doumenq, P., Guiliano, M., Mille, G., Kister, J.. Analytica Chim. Acta 242, 137141 (1991).Google Scholar
14. Pieri, N., Planche, J.-P., Martin, D., Kister, J.: Analysis 24, 113122 (1996).Google Scholar
15. Nyquist, R.A., and Kagel, R.O., Infrared spectra of inorganic compounds (3800-45cm-1) (Academic press, New York, 1971).Google Scholar
16.Standard test method for penetration of bituminous materials”. ASTM Procedure D 5(-97) (West Conshohocken, PA, USA, 1997).Google Scholar
17.Standard test method for softening point of bitumen (ring-and-ball apparatus)”. ASTM Procedure D 36(-95) (West Conshohocken, PA, USA, 1995).Google Scholar
18. Burnay, S.G., Nuclear and Chemical Waste Management 7, 107127 (1987).Google Scholar
19. Walczak, I., “Détermination des Produits Organiques d'Altération Chimique et Radiochimique du Bitume. Applications aux Enrobés Bitumés.” (2000), Thèse INSA F-LYON, France.Google Scholar