Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T07:51:48.836Z Has data issue: false hasContentIssue false

Actinide Response under Pressure Probed by Inelastic X-ray Scattering

Published online by Cambridge University Press:  24 May 2012

J.-P. Rueff*
Affiliation:
Synchrotron SOLEIL, L’Orme des Merisiers, BP 48 Saint Aubin 91192, Gif sur Yvette, France. Laboratoire de Chimie Physique – Matière et Rayonnement, CNRS-UMR 7614, UPMC 75005 Paris, France
Get access

Abstract

The electronic response of actinide systems under high-pressure conditions is undoubtedly of broad scientific interest but simultaneously very difficult to qualify. We will focus here on the use of inelastic x-ray scattering and its significance for actinides research through recent examples. IXS indeed combines several advantages that turn it into a powerful probe of the electronic and valence properties of f-electron systems. Besides element and orbital selectivity, resonant IXS can overcome core-hole lifetime broadening thus providing sharper spectral features and finer details about the electronic structure. Second, non-dipolar transitions are allowed in non-resonant IXS at high momentum transfer; thus “giant dipolar” Fano-like resonances that overwhelms the electron response at the O4,5 edges can be avoided. Recent results of IXS under pressure in Am and U under pressure are presented along with perspectives for actinides research at SOLEIL synchrotron.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rueff, J.-P. and Shukla, A., Rev. Mod. Phys. 82, 847 (2010).Google Scholar
2. Rueff, J.-P., Raymond, S., Yaresko, A., Braithwaite, D., Leininger, Ph., Vanko, G., Huxley, A., Rebizant, J., and Sato, N., Phys. Rev. B 76, 085113 (2007).Google Scholar
3. Galambosi, S., Ph.D. thesis, University of Helsinki, 2007.Google Scholar
4. Rueff, J.-P., Raymond, S., Taguchi, M., Sikora, M., Itié, J.-P., Baudelet, F., Braithwaite, D., Knebel, G., and Jaccard, D., Phys. Rev. Lett. 106, 186405 (2011).Google Scholar
5. Heathman, S., Rueff, J. P., Simonelli, L., Denecke, M. A., Griveau, J. C., Caciuffo, R., and Lander, G. H., Phys. Rev. B 82, 201103 (2010).Google Scholar
6. Zwicknagl, G. and Fulde, P., J. Phys.: Condens. Matter 15, S1911 (2003).Google Scholar
7. Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Litfin, K., Meresse, Y., and Libotte, H., Phys. Rev. Lett. 85, 2961 (2000).Google Scholar
8. Savrasov, Sergej Y., Haule, Kristjan, and Kotliar, Gabriel, Phys. Rev. Lett. 96, 036404 (2006).Google Scholar
9. Söderlind, Per, Moore, K. T., Landa, A., Sadigh, B., and Bradley, J. A., Phys. Rev. B 84, 075138 (2011).Google Scholar
10. Vitova, T., Kvashnina, K. O., Nocton, G., Sukharina, G., Denecke, M. A., Butorin, S. M., Mazzanti, M., Caciuffo, R., Soldatov, A., Behrends, T., and Geckeis, H., Phys. Rev. B 82, 235118 (2010).Google Scholar
11. Moore, Kevin T. and van der Laan, Gerrit, Rev. Mod. Phys. 81, 298 (2009).Google Scholar
12. Caciuffo, R., van der Laan, G., Simonelli, L., Vitova, T., Mazzoli, C., Denecke, M. A., and Lander, G. H., Phys. Rev. B 81, 195104 (2010).Google Scholar