Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-hjh89 Total loading time: 0.18 Render date: 2021-09-24T22:53:36.540Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

ZnO:B thin films made by two-step growth method

Published online by Cambridge University Press:  08 May 2015

Hengsheng Zhang
Affiliation:
Hunan Gongchuang Photovatic Science and Technology Co. Ltd., No.1 Hongyuan Road, Hengyang, 421005, P.R.China
Fang Wang
Affiliation:
Hunan Gongchuang Photovatic Science and Technology Co. Ltd., No.1 Hongyuan Road, Hengyang, 421005, P.R.China
Wei Xiong
Affiliation:
Hunan Gongchuang Photovatic Science and Technology Co. Ltd., No.1 Hongyuan Road, Hengyang, 421005, P.R.China
Get access

Abstract

Two-step growth method of low pressure chemical vapor deposition(LPCVD) process was employed to fabricate the ZnO:B-TCO film; For the first layer, the seed layer with a heavy doping concentration was deposited on the glass substrate, the film having higher deposition rate were then grown on the top of the first layer; It shows that the doping situations of the seed layer play an important role in electrical and optical performance of the whole ZnO:B-TCO layer, and the combination of this two properties is optimal when the doping ratio (B2H6/DEZ) was 0.4;

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagnall, D. M., Chen, Y. F., Zhu, Z. etc. Optically pumped lasing of ZnO at room temperature, Applied Physics Letters, Vol. 70, 2230 (1997).CrossRefGoogle Scholar
Shah, A., Meier, J., Buechel, A. etc. Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass, Thin Solid Films, Vol. 502, 292299 (2006).CrossRefGoogle Scholar
Meier, J., Spitznagel, J., Kroll, U. etc. Potential of amorphous and microcrystalline silicon solar cell, Thin Solid Films, Vol. 451, 518524 (2004).CrossRefGoogle Scholar
Kluth, Oliver, Schope, Gunnar, Hupkes, Jurgen etc. Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behavior, Thin Solid Films, Vol. 442, 8085 (2003).CrossRefGoogle Scholar
Chen, Yefan, Ko, Hang-Ju, Hong, Soon-Ku etc. Morphology evolution of ZnO (000-1) surface during plasma-assisted molecular-beam epitaxy, Applied Physics Letters, Vol. 80, 1358 (2002).CrossRefGoogle Scholar
Ohyama, Masashi, Kozuka, Hiromitsu, Yoko, Toshinobu, Sol-Gel Preparation of Transparent and Conductive Aluminum-Doped Zinc Oxide Films with Highly Preferential Crystal Orientation, Journal of the American Ceramic Society, Vol. 81, 16221632 (1998).CrossRefGoogle Scholar
Fay, Sylvie, Steinhauster, Jerome, Oliveira, Nuno etc. Opto-electronic properties of rough LP-CVD ZnO: B for use as TCO in thin-film silicon solar cells, Thin Solid Films, Vol. 515, 85588561 (2007).CrossRefGoogle Scholar
Springer, J., Rech, B., Reetz, W. etc. Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates, Solar Energy Materials & Solar Cells, Vol. 85, 111 (2005).Google Scholar
Fay, S., Feitknecht, L., Schluchter, R etc. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells, Solar Energy Materials & Solar Cells, Vol. 90, 29602967 (2006).CrossRefGoogle Scholar
Fay, Sylvie, Steinhauster, Jerome, Nicolay, Sylvain etc. Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells, Thin Solid Films, Vol. 518, 29612966 (2010).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ZnO:B thin films made by two-step growth method
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ZnO:B thin films made by two-step growth method
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ZnO:B thin films made by two-step growth method
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *