Hostname: page-component-7d8f8d645b-clzrd Total loading time: 0 Render date: 2023-05-29T08:44:15.368Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

X-ray scattering: a wonderful tool to probe lattice strains in materials with small dimensions

Published online by Cambridge University Press:  01 February 2011

Olivier Thomas
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Audrey Loubens
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Patrice Gergaud
Stéphane LABAT TECSEN UMR CNRS 6122, Université Paul Cézanne, Marseille, France
Get access


X-ray diffraction was recognized from the early days as highly sensitive to atomic displacements. Indeed structural crystallography has been very successful in locating with great precision the position of atoms within an individual unit cell. In disordered systems it is the average structure and fluctuations about it that may be determined. In the field of mechanics diffraction may thus be used to evaluate elastic displacement fields. In this short overview we give examples from recent work where x-ray diffraction has been used to investigate average strains in lines, films or multilayers. In small objects the proximity of surfaces or interfaces may create very inhomogeneous displacement fields. X-ray scattering is again one of the best methods to determine such distributions. The need to characterize displacement fields in nanostructures together with the advent of third generation synchrotron radiation sources has generated new and powerful methods (anomalous diffraction, coherent diffraction, microdiffraction, …). We review some of the recent and promising results in the field of strain measurements in small dimensions via X-ray diffraction.

Research Article
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



[1] See e.g. Birnbaum, J., Williams, R., Phys. Today Jan 2000.Google Scholar
[2] Arzt, E., Prog. Mat. Sci. 46, 283 (2001).CrossRefGoogle Scholar
[3] Lester, H. and Aborn, R., Army Ordnance 6, 120 (1925).Google Scholar
[4] Sachs, G., Weerts, J., Z. Physik 64, 344 (1930).CrossRefGoogle Scholar
[5] Noyan, I. and Cohen, J., Residual stress: Measurement by diffraction and interpretation, (Springer, New York, 1987).CrossRefGoogle Scholar
[6] Clemens, B. and Bain, J., MRS Bulletin 17–7, 46 (1992).CrossRefGoogle Scholar
[7] Besser, P., Brennan, S., Bravman, J., J. Mat. Res. 9, 13 (1996).CrossRefGoogle Scholar
[8] Thomas, O., Shen, Q., Schieffer, P., Tournerie, N., Lepine, B., Phys. Rev. Lett. 90, 017205 (2003).CrossRefGoogle Scholar
[9] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., J. Appl. Phys. 87, 1172 (2000).CrossRefGoogle Scholar
[10] Labat, S., Gergaud, P., Thomas, O., Gilles, B., Marty, A., Appl. Phys. Lett. 75, 914 (1999).CrossRefGoogle Scholar
[11] Raabe, D., Sachtleber, M., Zhao, Z., Roters, F., Zaefferer, S., Acta Mat. 49, 3433 (2001).CrossRefGoogle Scholar
[12] Spolenak, R., Brown, W., Tamura, N., MacDowell, A., Celestre, R., Padmore, H., Valek, B., Bravman, J.C., Marieb, T., Fujimoto, H., Batterman, B., Patel, J., Phys. Rev. Lett. 90, 096102 (2003). See also this proceeding.CrossRefGoogle Scholar
[13] Bergemann, C., Keymeulen, H., J.F. van der Veen, Phys. Rev. Lett. 91, 204801 (2003).Google Scholar
[14] Williamson, G., Hall, W., Acta Met. 1, 52 (1953).Google Scholar
[15] Mittemeijer, E. J., Scardi, P., Diffraction Analysis of the Microstructure of Materials, Springer-Verlag, Berlin Heidelberg 2004.CrossRefGoogle Scholar
[16] Shen, Q., Kycia, S., Phys. Rev. B 55, 15791 (1997).CrossRefGoogle Scholar
[17] Robinson, I.K., Vartanyants, I., Appl. Surf. Sci. 182, 186 (2001).CrossRefGoogle Scholar
[18] Holy, V., Darhuber, A., Bauer, G., Wang, P., Song, Y., Sotomayor Torres, C., Holland, M., Phys. Rev. B 52, 8348 (1995).CrossRefGoogle Scholar
[19] Bocquet, F., Gergaud, P. and Thomas, O., J. Appl. Cryst. 36, 154 (2003).CrossRefGoogle Scholar
[20] Renevier, H., Hodeau, J-L., Wolfers, P., Andrieu, S., Weigelt, J., Frahm, R., Phys. Rev. Lett. 78, 2775 (1997).CrossRefGoogle Scholar
[21] Bigault, T., Bocquet, F., Labat, S., Thomas, O., Renevier, H., Phys. Rev B. 64, 125414 (2001).CrossRefGoogle Scholar
[22] Letoublon, A., Favre-Nicolin, V., Renevier, H., Proietti, M.G., Monat, C., Gendry, M., Marty, O., Priester, C., Phys. Rev. Lett. 92, 186101 (2004).CrossRefGoogle Scholar
[23] Kaganer, V., Jenichen, B., Paris, G., Ploog, K., Konovalov, O., Mikulik, P., Arai, S., Phys. Rev. B 66, 035310 (2002).CrossRefGoogle Scholar
[24] Loubens, A., Fortunier, R., Thomas, O., to be published.Google Scholar
[25] Joo, H.D., Kim, J.S., Kim, K.H., Tamura, N. and Koo, Y.M., Scripta Materialia 51, 1183 (2004).CrossRefGoogle Scholar
[26] Erdélyi, Z., Sladecek, M., Stadler, L-M., Zizak, I., Langer, G. A., Kis-Varga, M., Beke, D. and Sepiol, B., Science 306, 1913 (2004).CrossRefGoogle Scholar
[27] Gergaud, P., Rivero, C., Gailhanou, M., Thomas, O., Froment, B., Jaouen, H., Mat. Sci. Eng. B 114–115, 67 (2004).CrossRefGoogle Scholar
[28] Bérar, J.-F., Blanquart, L., Boudet, N., Breugnon, P., Caillot, B., Clemens, J.-C., Delpierre, P., Koudobine, I., Mouget, C., Potheau, R. and Valin, I. J. Appl. Cryst. 35, 471 (2002).CrossRefGoogle Scholar
[29] Orthen, A., Wagner, H., Martoiu, S., Amenitsch, H., Bernstorff, S., Besch, H.-J., Menk, R.-H., Nurdan, K., Rappolt, M., Walenta, A. H. and Werthenbach, U., J. Synchrotron Rad. 11, 177 (2004).CrossRefGoogle Scholar