Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-2p87r Total loading time: 0.232 Render date: 2021-10-17T21:35:28.590Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Wide-gap P-type Conductive Properties in Layered Oxychalcogenides

Published online by Cambridge University Press:  11 February 2011

Kazushige Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN
Kouhei Takafuji
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN
Hidenori Hiramatsu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Hiromichi Ohta
Affiliation:
Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Masahiro Hirano
Affiliation:
Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226–8503, JAPAN Hosono Project, ERATO, JST, KSP C-1232, 3–2–1 Sakado, Takatsu, Kawasaki 213–0012, JAPAN
Hiroshi Kawazoe
Affiliation:
R&D Center, HOYA Corporation, 3–3–1 Musashino, Akishima 196–8510, JAPAN
Get access

Abstract

Several Cu(I)-containing layered oxysulfides were selected as candidates for wide-gap p-type semiconductors by extending a concept of a materials design for transparent p-type conducting oxides. The electrical and optical properties of the selected oxysulfides were investigated, and their electronic structures were analyzed by energy band calculations. LaCuOS, Sr2Cu2ZnO2S2 and Sr2CuGaO3S were found to be wide-gap p-type semiconductors, and LaCuOS showed the largest energy gap (Eg=3.1eV) among these layered oxysulfides. It was also found that LaCuOS shows band edge emission under uv excitation at room temperature, which is consistent with the results of the energy band calculations that LaCuOS has a direct-allowed-type energy gap at Γ point. In further materials research, analogous layered oxychalcogenides such as LaCuOSe and LnCuOS (Ln=Pr, Nd) were found to show similar optical and electrical properties to those of LaCuOS. Therefore, it is considered that the layered crystal structure and the electronic structure are responsible for the wide-gap p-type conductive properties in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ginley, D. S. and Bright, C., MRS Bull. 25, 15 (2000)Google Scholar
2. Gordon, R. G., MRS Bull. 25, 52 (2000)CrossRefGoogle Scholar
3. Hamberg, I. and Granqvist, C.G., J. Appl. Phys. 60, R123 (1986)CrossRefGoogle Scholar
4. Kawazoe, H., Yasukawa, M., Hyodo, H., Kurita, M., Yanagi, H. and Hosono, H., Nature (London) 389, 939 (1997)CrossRefGoogle Scholar
5. Yanagi, H., Inoue, S., Ueda, K., Kawazoe, H. and Hosono, H., J. Appl. Phys. 88, 4159 (2000)CrossRefGoogle Scholar
6. Stauber, R. E., Perkins, J. D., Parilla, P. A. and Ginley, D. S., Electrochemical and Solid-State Letters 2, 654 (1999)CrossRefGoogle Scholar
7. Gong, H., Wang, Y. and Luo, Y., Appl. Phys. Lett. 76, 3959 (2000)CrossRefGoogle Scholar
8. Yanagi, H., Kudo, A., Ueda, K., Hosono, H. and Kawazoe, H., J. Electroceram. 4, 427 (2000)CrossRefGoogle Scholar
9. Ueda, K., Hase, T., Yanagi, H., Kawazoe, H., Hosono, H., Ohta, H., Orita, M. and Hirano, M., J. Appl. Phys. 89, 1790 (2001)CrossRefGoogle Scholar
10. Yanagi, H., Hase, T., Ibuki, S., Ueda, K. and Hosono, H., Appl. Phys. Lett. 78, 1583 (2001)CrossRefGoogle Scholar
11. Duan, N. and Sleight, A. W., Jayaraj, M. K. and Tate, J., Appl. Phys. Lett. 77, 1325 (2000)CrossRefGoogle Scholar
12. Nagarajan, R., Draeseke, A. D., Sleight, A. W. and Tate, J., J. Appl. Phys. 89, 8022 (2001)CrossRefGoogle Scholar
13. Kudo, A., Yanagi, H., Hosono, H. and Kawazoe, H., Appl. Phys. Lett. 73, 220 (1998)CrossRefGoogle Scholar
14. Kudo, A., Yanagi, H., Ueda, K., Hosono, H., Kawazoe, H. and Yano, Y., Appl. Phys. Lett. 75, 2851 (1999)CrossRefGoogle Scholar
15. Yanagi, H., Ueda, K., Ohta, H., Orita, M., Hirano, M. and Hosono, H., Solid State Commun. 121, 15 (2002)Google Scholar
16. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M. and Hosono, H., Electron. Lett. 36, 1 (2000)Google Scholar
17. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M. and Hosono, H., Appl. Phsy. Lett. 77, 475 (2000)Google Scholar
18. Kawazoe, H., Yanagi, H., Ueda, K. and Hosono, H., Mater. Res. Bull. 25, 29 (2000)Google Scholar
19. Grozdanov, I. and Najdoski, M., J. Solid State Chem. 114, 469 (1995)Google Scholar
20. Ouammou, A., Bahout, M. M., Pena, O., Halet, J. F., Saillard, J. Y., and Carel, C., J. Solid State Chem. 117, 73 (1995)CrossRefGoogle Scholar
21. Park, S., Keszler, D. A., Valencia, M. M., Hoffman, R. L., Bender, J. P., and Wager, J. F., Appl. Phys. Lett. 80, 4393 (2002)CrossRefGoogle Scholar
22. Ueda, K., Inoue, S., Hirose, S., Kawazoe, H. and Hosono, H., Appl. Phys. Lett. 77, 2701 (2000)CrossRefGoogle Scholar
23. Ueda, K., Hirose, S., Kawazoe, H. and Hosono, H., Chem. Mater. 13, 1880 (2001)Google Scholar
24. Palazzi, M., Acad. Sci., Paris C. R. 292, 789 (1981)Google Scholar
25. Zhu, W. J. and Hor, P. H., J. Solid State Chem. 130, 319 (1997)CrossRefGoogle Scholar
26. Zhu, W. J. and Hor, P. H., Inorg. Chem. 36, 357 (1997)Google Scholar
27. Zhu, W. J. and Hor, P. H., J. Solid State Chem. 134, 128 (1997)CrossRefGoogle Scholar
28. Zhu, W. J., Huang, Y. Z., Dong, C. and Zhao, Z. X., Mater. Res. Bull. 29, 143 (1994)CrossRefGoogle Scholar
29. Hiramatsu, H., Orita, M., Hirano, M., Ueda, K. and Hosono, H., J. Appl. Phys. 91, 9177 (2002)CrossRefGoogle Scholar
30. Hirose, S., Ueda, K., Kawazoe, H., and Hosono, H., Chem. Mater. 14, 1037 (2002)CrossRefGoogle Scholar
31. Ueda, K., Inoue, S., Hosono, H., Sarukura, N. and Hirano, M., Appl. Phys. Lett. 78, 2333 (2001)Google Scholar
32. Inoue, S., Ueda, K., Hosono, H. and Hamada, N., Phys. Rev. B 64, 245211 (2001)CrossRefGoogle Scholar
33. Ueda, K. and Hosono, H., Thin Solid Films 411, 115 (2002)CrossRefGoogle Scholar
34. Ueda, K. and Hosono, H., J. Appl. Phys. 91, 4768 (2002)CrossRefGoogle Scholar
35. Ueda, K., Takafuji, K., and Hosono, H., J. Solid State Chem. (in press)Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Wide-gap P-type Conductive Properties in Layered Oxychalcogenides
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Wide-gap P-type Conductive Properties in Layered Oxychalcogenides
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Wide-gap P-type Conductive Properties in Layered Oxychalcogenides
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *