Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-4xs5l Total loading time: 0.132 Render date: 2021-06-15T23:56:18.393Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Whisker Formation in Sn Coatings on Cu

Published online by Cambridge University Press:  01 February 2011

Eric Chason
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Lucine Reinbold
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Sharvan Kumar
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Get access

Abstract

In the microelectronics industry, Sn is often electroplated as a protective layer on Cu conductors. Pure Sn layers on Cu develop whiskers that can cause component failures and have even been implicated in the loss of several satellites. Alloying Sn with Pb suppresses whisker formation, but the push towards Pb-free processing will make this unacceptable in the future. To understand the driving forces and mechanisms of whisker formation on pure Sn, we are measuring the kinetics of stress evolution and intermetallic formation in Sn/Cu layers. By using thin films of Sn and Cu, we can monitor the stress evolution in real time using wafer-curvature based techniques. Preliminary results of stress evolution in vapor-deposited films are presented showing the evolution of tensile stress in the Cu layers and compressive stress in the Sn layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Cobb, H.L., “Cadmium Whiskers”, Monthly Rev. Am. Electroplaters Soc., 33 (28): pp. 2830 (1946).Google Scholar
[2] Brusse, J., “Tin Whiskers: Revisiting an Old Problem”, NASA's EEE Links Newsletter, 4 (4), pp. 57 (December 1998).Google Scholar
[3] Silverstein, S., “Reasons for Failure Lost with Galaxy 4”, Space News, pp. 3, 20 (August 17–23, 1998).Google Scholar
[4] FDA Website: “Tin Whiskers”. www.fda.gov/ora/inspect_ref/itg/itg42.html Google Scholar
[5] NASA Goddard Space Flight Center Tin Whisker Experimentation Page, www.nepp.nasa.gov/whisker/experiment/index.html Google Scholar
[6] Sabbagh, N.A.J., McQueen, H.J., “Tin Whiskers: Causes and Remedies”, Metal Finishing, p. 27 (March 1975).Google Scholar
[7] Cheng, Y.T., Weiner, A.M., Wong, C.A., Balogh, M.P., and Lukitsch, M.J.. “Stress-Induced Growth of Bismuth Nanowires”, Applied Physics Letters, 8 (17), pp. 32483250 (October 2002).CrossRefGoogle Scholar
[8] Fisher, R.M., Darken, L.S., and Carroll, K.G., “Accelerated Growth of Tin Whiskers”, Acta Metallurgica. 2 (3): pp. 368372 (May 1954).CrossRefGoogle Scholar
[9] Lee, B.Z. and Lee, D.N., “Spontaneous Growth Mechanism of Tin Whiskers”, Acta Metallurgica, 46 (10): pp. 37013714 (1998).Google Scholar
[10] Tu, K.N., “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin films”, Acta Metallurgica, 21 (4): pp. 347354 (1973).CrossRefGoogle Scholar
[11] Tu, K.N., “Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin Film Reactions”, Phys. Rev. B, 49, 2030 (1994).CrossRefGoogle ScholarPubMed
[12] Eshelby, J.D., “A Tentative Theory of Metallic Whisker Growth”, Phys. Rev., 91: pp. 755756 (1953).CrossRefGoogle Scholar
[13] Barsoum, M.W., Hoffman, E.N., Doherty, R.D., Gupta, S., Zavaliangos, A., “Driving Force and Mechanism for Spontaneous Metal Whisker Formation”, Phys. Rev. Letters, 93 (20), (November 2004).CrossRefGoogle ScholarPubMed
[14] UnpublishedGoogle Scholar
[15] Chason, E. and Floro, J.A., “Measurements of Stress Evolution during Thin Film Growth”, Mater. Res. Symp. Proc. 428, 499 (1996).CrossRefGoogle Scholar
[16] Chason, E., Reinbold, L., Kumar, S., in preparation.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Whisker Formation in Sn Coatings on Cu
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Whisker Formation in Sn Coatings on Cu
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Whisker Formation in Sn Coatings on Cu
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *