Hostname: page-component-5d59c44645-hb754 Total loading time: 0 Render date: 2024-02-23T17:25:52.810Z Has data issue: false hasContentIssue false

The Use of AlN Interlayers to Improve GaN Growth on A-Plane Sapphire

Published online by Cambridge University Press:  15 March 2011

D.D. Koleske
Affiliation:
Code 6800, Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
M.E. Twigg
Affiliation:
Code 6800, Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
A.E. Wickenden
Affiliation:
Code 6800, Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
R.L. Henry
Affiliation:
Code 6800, Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
R.J. Gorman
Affiliation:
Code 6800, Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
J.A. Freitas Jr.
Affiliation:
Code 6800, Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
M. Fatemi
Affiliation:
Code 6800, Electronics Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
Get access

Abstract

The lack of a suitable, lattice matched substrate for the growth of the group III nitrides typically restricts GaN film growth to substrates such as sapphire or SiC, despite the large lattice and thermal mismatch. With the use of AlN or GaN nucleation layers (NL), GaN films of sufficient quality have been produced for blue LEDs. However, for laser and large-area microwave device applications, the large number of dislocations (> 108 cm−2) limit device performance, and techniques are desired to reduce dislocation density during the growth process. Here, we demonstrate how low temperature AlN interlayers (IL) sandwiched between high temperature (HT) GaN layers can be used to improve the electrical, optical, and structural properties of Si doped GaN films. A nearly two-fold increase in mobility is observed in Si doped GaN grown using 5 AlN IL compared to GaN grown on a single AlN NL. For GaN films grown on multiple AlN IL, cross-sectional transmission electron microscopy images reveal a significant reduction in the screw dislocation density and photoluminescence spectra reveal a reduction in yellow band intensity. An analysis of the electrical data based on a single donor/single acceptor model suggests that the improved electron mobility is the result of a reduced acceptor concentration in the top GaN film. The reduction in the calculated acceptor concentration may be associated with the reduction of the screw dislocation density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Grzegory, I., Bockowski, M., Lucznik, B., Krukowski, S., Wroblewski, M., and Porowski, S., MRS Internet J. Nitride Semicond. Res. 1, 20 (1996).Google Scholar
[2] Molnar, R.J., Götz, W., Romano, L.T., and Johnson, N.M., J. Crystal Growth 178, 147 (1997).Google Scholar
[3] Nam, O.-H., Bremser, M.D., Zheleva, T.S., and Davis, R.F., App. Phys. Lett. 71, 2638 (1997).Google Scholar
[4] Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J.A., Chason, E., and Figiel, J., Jpn. J. Appl. Phys., Part 2 37, L1540 (1998).Google Scholar
[5] Nakamura, S, Senoh, M, Nagahama, S, Iwasa, N, Yamada, T, Matsushita, T, Kiyoku, H, Sugimoto, Y, Kozaki, T, Umemoto, H, Sano, M, Chocho, K, Jpn, J. Appl. Phys., Part 2, 37, L309 (1998).Google Scholar
[6] Kozodoy, P., Ibbetson, J.P., Marchand, H., Fini, P.T., Keller, S., Speck, J.S., DenBaars, S.P., and Mishra, U.K., Appl. Phys. Lett. 73, 975 (1998).Google Scholar
[7] Kamp, M., Kirchner, C., Schwegler, V., Pelzmann, A., Ebeling, K.J., Leszczynski, M., Grzegory, I., Suski, T., and Porowski, S., MRS Internet J. Nitride Semicond. Res. 4S1, G10.2 (1999).Google Scholar
[8] Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M., and Moustakas, T.D., J. Appl. Phys. 83, 3656 (1998).Google Scholar
[9] Leung, K., Wright, A. F., and Stechel, E. B., Appl. Phys. Lett. 74, 2495 (1999).Google Scholar
[10] Look, D.C. and Sizelove, J.R., Phys. Rev. Lett. 82, 1237 (1999).Google Scholar
[11] Iwaya, M., Takeuchi, T., Yamaguchi, S., Wetzel, C., Amano, H., Akasaki, I., Jpn. J. Appl. Phys. 37, L316 (1998).Google Scholar
[12] Amano, H., Iwaya, M., Hayashi, N., Kashima, T., Katsuragawa, M., Takeuchi, T., Wetzel, C. and Akasaki, I, MRS Internet J. Nitride Semicond. Res. 4S1, G10.1 (1999).Google Scholar
[13] Yang, C.-C., Wu, M.-C., Chang, C.-A., Chi, G.-C., J. Appl. Phys. 85, 8427 (1999).Google Scholar
[14] Pernot, C., Hirano, A., Iwaya, M., Detchprohm, T., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. Part 2, 38, L487 (1999).Google Scholar
[15] Wickenden, A.E., Koleske, D.D., Henry, R.L., Gorman, R.J., Culbertson, J.C., and Twigg, M.E., J. Electron. Mat. 28, 301 (1999).Google Scholar
[16] Wickenden, A.E., Gaskill, D.K., Koleske, D.D., Doverspike, K., Simons, D.S., and Chi, P.H., Mat. Res. Soc. Symp. Proc. 395, 679 (1996).Google Scholar
[17] Koleske, D.D., Twigg, M.E., Wickenden, A.E., Henry, R.L., Gorman, R.J., Freitas, J.A. Jr., and Fatemi, M., Appl. Phys. Lett. 75, 3141 (1999).Google Scholar
[18] Wu, X. H., Brown, L. M., Kapolnik, D., Keller, S., Keller, B., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 80, 3228 (1996).Google Scholar
[19] Rouviere, J-L., Arlery, M., and Bourret, A., Microscopy of Semiconducting Materials 1997 (IOP Publishing, London, 1997) Int. Phys. Conf. Ser. No. 157, pp.173-182.Google Scholar
[20] Twigg, M. E., Henry, R. L., Wickenden, A. E., Koleske, D. D., and Culbertson, J. C., Appl. Phys. Lett. 75, 686 (1999).Google Scholar
[21] Khan, M. A., Chen, Q., Sun, C. J., Shur, M. and Gelmont, B., Appl. Phys. Lett. 67, 1429 (1995).Google Scholar
[22] Chin, V.W., Tansley, T.L., and Osotchan, T., J. Appl. Phys. 75, 7365 (1994).Google Scholar
[23] Kaufmann, U., Kunzer, M., Obloh, H., Maier, M., Manz, Ch., Ramakrishnan, A., and Santic, B., Phys. Rev. B 59, 5561 (1999).Google Scholar
[24] Hersee, S.D., Ramer, J.C., and Malloy, K.J., MRS Bulletin 22, 45 (1997).Google Scholar