Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-569ts Total loading time: 0.238 Render date: 2022-10-04T11:45:08.498Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Ultra-fast Time-Resolved Electron Diffraction of Strongly Driven Phase Transitions on Silicon Surfaces

Published online by Cambridge University Press:  31 January 2011

Simone Möllenbeck
Affiliation:
simone.moellenbeck@uni-due.de, University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Anja Hanisch-Blicharski
Affiliation:
anja.hanisch@uni-due.de, University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Paul Schneider
Affiliation:
paul.schneider@uni-due.de, University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Manuel Ligges
Affiliation:
manuel.ligges@uni-due.de, University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Ping Zhou
Affiliation:
ping.zhou@uni-due.de, University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Martin Kammler
Affiliation:
martin.kammler@uni-due.de, United States
Boris Krenzer
Affiliation:
boris.krenzer@uni-due.de, University of Duisburg-Essen, Department of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE), Duisburg, Germany
Michael Horn-von Hoegen
Affiliation:
horn-von-hoegen@uni-due.de, United States
Get access

Abstract

The dynamics of strongly driven phase transitions at surfaces are studied by ultra-fast time-resolved reflection high energy electron diffraction. The surfaces are excited by an intense fs-laser pulse (pump) and probed by an ultra-short electron pulse with variable time delay. The order-disorder phase transition from a c(4×2) to a (2×1) of the bare Si(001) surface shows a transient decrease of the intensity of the c(4×2) spots which recovers on a time scale of a few hundred picoseconds indicating the excitation of the phase transition. On Si(111) a monolayer of Indium induces a (4×1) reconstruction which undergoes a Peierls like phase transition to a (8ד2”) reconstruction below 100 K. Upon laser excitation at a temperature of 40 K the phase transition was strongly driven. The (8ד2”)-diffraction spots instantaneously disappears, while the intensity of the (4×1)-spots increases. This increase of the (4×1) spot intensity excludes an explanation by the Debye-Waller-Effect and is evidence for a true structural phase transition at a surface.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Janzen, A. Krenzer, B. Heinz, O. Zhou, P. Thien, D. Hanisch, A. Meyer, F.J. Heringdorf, zu, Linde, D. von der, and Hoegen, M. Horn-von, Rev. of Sci. Instr. 78, 013906 (2007).CrossRefGoogle Scholar
2 Janzen, A. Krenzer, B. Zhou, P. Linde, D. von der, and Hoegen, M. Horn-von, Surf. Sci. 600, 4094 (2006).CrossRefGoogle Scholar
3 Krenzer, B. Janzen, A. Zhou, P. Linde, D. von der, and Hoegen, M. Horn-von, New J. of Phys. 8, 190 (2006).CrossRefGoogle Scholar
4 Hanisch, A. Krenzer, B. Pelka, T. Möllenbeck, S., and Hoegen, M. Horn-von, Phys. Rev. B77, 125410 (2008).CrossRefGoogle Scholar
5 Krenzer, B. Hanisch-Blicharski, A., Schneider, P. Payer, Th., Möllenbeck, S., Osmani, O. Kammler, M. Meyer, R. and Hoegen, M. Horn-von, Phys. Rev. B80, 024307 (2009).CrossRefGoogle Scholar
6 Kury, P. Hild, R. Thien, D. Günter, H.L., Meyer, F.J. Heringdorf, zu, and Hoegen, M. Horn-von, Rev. of Sci. Instr. 76, 083906 (2005).CrossRefGoogle Scholar
7 Wolkow, R.A. Phys. Rev. Lett. 68, 2636 (1992).CrossRefGoogle Scholar
8 Matsumoto, M. Fukutani, K. and Okano, T. Phys. Rev. Lett. 90, 106163 (2003).CrossRefGoogle Scholar
9 Tabata, T. Aruga, T. and Murata, Y. Surf. Sci. 179, L63 (1987).CrossRefGoogle Scholar
10 Hata, K. Yoshida, S. and Shigekawa, H. Phys. Rev. Lett. 89, 286104 (2002).CrossRefGoogle Scholar
11 Kawai, H. and Narikiyo, O. J. Phys. Soc. Jpn., 73, 417 (2004).CrossRefGoogle Scholar
12 Pennec, Y. Hoegen, M. Horn-von, Zhu, X. Fortin, D.C. and Freeman, M.R. Phys. Rev. Lett. 96, 026102 (2006).CrossRefGoogle Scholar
13 Weinelt, M. Kutschera, M. Fauster, T. and Rohlfing, M. Phys. Rev. Lett. 92, 126801 (2004).CrossRefGoogle Scholar
14 Yeom, H.W. S.Takeda, Rotenberg, E. Matsuda, I. Horikoshi, K. Schaefer, J. Lee, C.M. Kevan, S.D. Ohta, T. Nagao, T. and Hasegawa, S. Phys. Rev. Lett. 82, 4898 (1999).CrossRefGoogle Scholar
15 Ryjkov, S.V. Nagao, T. Lifshits, V.G. and Hasegawa, S. Surf. Sci. 488, 15 (2001).CrossRefGoogle Scholar
16 Gallus, O., TPillo, h. Hengsberger, M. Segovia, P. and Baer, Y. Euro Phys. J. B20, 313 (2001).Google Scholar
17 Lin, B. and Elsayed-Ali, H.E., Surf. Sci. 498, 275 (2002).CrossRefGoogle Scholar
18 Siwick, B.J. Dwyer, J.R. Jordan, R.E. and Miller, R.J.D. Chem. Phys. 299, 285 (2004).CrossRefGoogle Scholar
19 Schmitt, F. Kirchmann, P.S. Bovensiepen, U. Moore, R.G. Rettig, L. Krenz, M. Chu, J.H. Ru, N. Perfetti, L. Lu, D.H. Wolf, M. Fisher, I.R. Shen, Z.X. Science 321, 1649 (2008).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ultra-fast Time-Resolved Electron Diffraction of Strongly Driven Phase Transitions on Silicon Surfaces
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Ultra-fast Time-Resolved Electron Diffraction of Strongly Driven Phase Transitions on Silicon Surfaces
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Ultra-fast Time-Resolved Electron Diffraction of Strongly Driven Phase Transitions on Silicon Surfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *