Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T03:59:40.627Z Has data issue: false hasContentIssue false

Tunable Microwave Composites Containing Ferromagnetic Microwires

Published online by Cambridge University Press:  15 March 2011

Mihail Ipatov
Affiliation:
Dpto. Física de Materiales, Facultad de Química, Paseo Manuel de Lardizabal3, Universidad del País Vasco, 20018 San Sebastián, Spain
Larissa Panina
Affiliation:
School of Computing, Communications and Electronics, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
Gloria R. Aranda
Affiliation:
Dpto. Física de Materiales, Facultad de Química, Paseo Manuel de Lardizabal3, Universidad del País Vasco, 20018 San Sebastián, Spain
Valentina Zhukova
Affiliation:
Dpto. Física de Materiales, Facultad de Química, Paseo Manuel de Lardizabal3, Universidad del País Vasco, 20018 San Sebastián, Spain
Arcady Zhukov
Affiliation:
Dpto. Física de Materiales, Facultad de Química, Paseo Manuel de Lardizabal3, Universidad del País Vasco, 20018 San Sebastián, Spain
Julian Gonzalez
Affiliation:
Dpto. Física de Materiales, Facultad de Química, Paseo Manuel de Lardizabal3, Universidad del País Vasco, 20018 San Sebastián, Spain
Get access

Abstract

The effect of the external magnetic field on the dispersion of the effective permittivity in arrays of parallel CoFe-based amorphous wires is demonstrated by measuring S-parameters in free space in the frequency band of 0.9-17 GHz. The magnetic field is applied along the wires sensitively changing their magnetization and high frequency impedance. Based on the measurements of magneto-impedance in a single wire and transmission/reflection spectra of composites in free space, we show the correlation between magneto-impedance and the field dependence of the effective permittivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brown, J., Prog. Dielectr. 2, 195 (1960).Google Scholar
2. Rotman, W., IRE Trans. Antennas Propag. 10, 82 (1962).Google Scholar
3. Pendry, J. B., Holden, A. J., Stewart, W. J., and Youngs, I., Phys. Rev. Lett. 76, 4773 (1996).Google Scholar
4. Sarychev, A.K., Shalaev, V.M., Physics Reports 335, 275 (2000).Google Scholar
5. Pendry, J. B., Phys. Rev. Lett. 85, 3966 (2000).Google Scholar
6. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., and Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).Google Scholar
7. Reynet, O., Adent, A.-L., Deprot, S., Acher, O., Latrach, M., Phys. Rev. B 66, 94412 (2002).Google Scholar
8. Makhnovskiy, D. P., Panina, L. V., J. Appl. Phys. 93 4120 (2003).Google Scholar
9. Makhnovskiy, D.P., Panina, L. V., Garcia, C., Zhukov, A. P., and Gonzalez, J., Phys. Rev. B 74, 064205 (2006).Google Scholar
10. Panina, L. V., Sandacci, S. I., and Makhnovskiy, D. P., J. Appl. Phys. 97, 013701 (2005).Google Scholar
11. Peng, H.X., Qin, F.X., Phan, M.H., Tang, Jie, Panina, L.V., Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., J. Non-Crystalline Solids 355 1380 (2009).Google Scholar
12. Sandacci, S., Makhnovskiy, D., Panina, L., and Larin, V., IEEE Tran. Magn. 41, 10 (2005).Google Scholar
13. Sarychev, A.K., Shalaev, V.M., Physics Reports 335, 275 (2000) (see equation (7.67))Google Scholar
14. Belov, P., Tretyakov, S., and Viitanen, A., J. Electromagn. Waves Appl. 16, 1153 (2002). D. P.Google Scholar
15. , Makhnovskiy, >Panina, L. V., and Mapps, D. J., Phys. Rev. B 63, 144424 (2001).Panina,+L.+V.,+and+Mapps,+D.+J.,+Phys.+Rev.+B+63,+144424+(2001).>Google Scholar
16. Smith, D. R., Schultz, S., Markos, P., Soukoulis, C. M., Phys. Rev. B, 65, 195104 (2002).Google Scholar