Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-bh266 Total loading time: 0.21 Render date: 2022-01-28T23:27:13.635Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Transparent Conductive Three-Layered Composite Films Based on Carbon Nanotubes with Improved Mechanical Stability

Published online by Cambridge University Press:  05 February 2014

Hans-Christoph Schwarz
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Andreas M. Schneider
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Stephen Klimke
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Bibin T. Anto
Affiliation:
Bayer Technology Services GmbH, 51368 Leverkusen, Germany
Stefanie Eiden
Affiliation:
Bayer Technology Services GmbH, 51368 Leverkusen, Germany
Peter Behrens
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Get access

Abstract

A layered composite coating material with favorable properties for application as a transparent conductor is presented. It is composed of layers of three nanoscopic materials, namely zinc oxide nanoparticles, single wall nanotubes, and graphene oxide nanosheets. The electrically conducting layer consists of single wall nanotubes (SWNTs). The layer of zinc oxide nanoparticles acts as a primer. It increases the adhesion and the stability of the films against mechanical stresses. The top layer of graphene oxide enhances the conductivity of such coatings. Such three-layer composite coatings show better conductivity (without compromising transparency) and improved mechanical stability compared to pure SWNT films. The processes used in the preparation of such coatings are easily scalable.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., Rinzler, A. G., Science 305, 12731276 (2004)CrossRef
Han, J. T., Kim, J. S., Jo, S. B., Kim, S. H., Kim, J. S., Kang, B., Jeong, H. J., Jeong, S. Y., Lee, G. W. and Cho, K., Nanoscale 4, 77357742 (2012)CrossRef
Jacobsson, T. J., Edvinsson, T., Inorg. Chem. 50, 95789586 (2011)CrossRef
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W. and Tour, J. M., ACS Nano 4, 48064814 (2010)CrossRef
“Paints and varnishes – Determination of film hardness by pencil test”, ISO 15184:1998(E)

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Transparent Conductive Three-Layered Composite Films Based on Carbon Nanotubes with Improved Mechanical Stability
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Transparent Conductive Three-Layered Composite Films Based on Carbon Nanotubes with Improved Mechanical Stability
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Transparent Conductive Three-Layered Composite Films Based on Carbon Nanotubes with Improved Mechanical Stability
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *