Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-ntdpv Total loading time: 0.338 Render date: 2022-01-27T18:56:06.113Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene

Published online by Cambridge University Press:  07 July 2011

Amirhasan Nourbakhsh
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium
Mirco Cantoro*
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium Department of Physics and Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200d, B-3001 Leuven, Belgium
Tom Vosch
Affiliation:
Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f, B-3001 Leuven, Belgium
Geoffrey Pourtois
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium
Johan Hofkens
Affiliation:
Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f, B-3001 Leuven, Belgium
Marc M. Heyns
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
Bert F. Sels
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium
Stefan De Gendt
Affiliation:
imec, Kapeldreef 75, B-3001 Leuven, Belgium Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f, B-3001 Leuven, Belgium
*
*Electronic mail: cantoro@imec.be
Get access

Abstract

We investigate the structural, optical and electrical properties of single-layer graphene exposed to oxygen plasma treatment. We find that the pristine semimetallic behavior of graphene disappears upon plasma treatment, in favour of the opening of a bandgap and the featuring of semiconducting properties. The metal-to-semiconductor transition observed appears to be dependent on the plasma treatment time. The semiconducting behavior is also confirmed by photoluminescence measurements. The opening of a bandgap in graphene is explained in terms of graphene surface functionalization with oxygen atoms, bonded as epoxy groups. Ab initio calculations of the density of states show more details about the oxygen–graphene interaction and its effects on the graphene optoelectronic properties, predicting no states near the Fermi level at increasing epoxy group density. The structural changes are also monitored by Raman spectroscopy, showing the progressive evolution of the sp2 character of pristine graphene to sp3, due to the lattice decoration with out-of-plane epoxy groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., and Geim, A.K., Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
[2] Sprinkle, M., Soukiassian, P., de Heer, W.A., Berger, C., and Conrad, E.H., Phys. Status Solidi-R 3, A91 (2009).CrossRefGoogle Scholar
[3] Lin, Y.M., Perebeinos, V., Chen, Z.H., and Avouris, P., Phys. Rev. B 78, 161409R (2008).CrossRefGoogle Scholar
[4] Lemme, M.C., Echtermeyer, T.J., Baus, M., and Kurz, H., IEEE Electr. Device L. 28, 282 (2007).CrossRefGoogle Scholar
[5] Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., and Shepard, K.L., Nature Nanotechnol. 3, 654 (2008).CrossRefGoogle Scholar
[6] Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K., P. Natl Acad.Sci. USA 102, 10451 (2005).CrossRefGoogle Scholar
[7] Vosch, T., Cotlet, M., Hofkens, J., Van der Biest, K., Lor, M., Weston, K., Tinnefeld, P., Sauer, M., Latterini, L., Mullen, K., and De Schryver, F.C., J. Phys. Chem. A 107, 6920 (2003).CrossRefGoogle Scholar
[8] Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
[9] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., J. Phys.-Condens. Mat. 21, (2009).CrossRefGoogle Scholar
[10] Ferrari, A.C., and Robertson, J., Phil. T. R. Soc. Lond. A 362, 2477 (2004).CrossRefGoogle Scholar
[11] Ferrari, A.C., Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
[12] Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K., Phys. Rev. Lett. 97, 187401 (2006).CrossRefGoogle Scholar
[13] Ferrari, A.C., and Robertson, J., Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
[14] Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., and Ruoff, R.S., Nature 448, 457 (2007).CrossRefGoogle Scholar
[15] Cai, W.W., Piner, R.D., Stadermann, F.J., Park, S., Shaibat, M.A., Ishii, Y., Yang, D.X., Velamakanni, A., An, S.J., Stoller, M., An, J.H., Chen, D.M., and Ruoff, R.S., Science 321, 1815 (2008).CrossRefGoogle Scholar
[16] Gao, X.F., Jang, J., and Nagase, S., J. Phys. Chem. C 114, 832 (2010).CrossRefGoogle Scholar
[17] Gokus, T., Nair, R.R., Bonetti, A., Bohmler, M., Lombardo, A., Novoselov, K.S., Geim, A.K., Ferrari, A.C., and Hartschuh, A., ACS Nano 3, 3963 (2009).CrossRefGoogle Scholar
[18] Kim, D.C., Jeon, D.Y., Chung, H.J., Woo, Y., Shin, J.K., and Seo, S., Nanotechnology 20, (2009).Google Scholar
[19] Nourbakhsh, A., Cantoro, M., Hadipour, A., Vosch, T., van der Veen, M.H., Heyns, M.M., Sels, B.F., and De Gendt, S., Appl. Phys. Lett. 97, (2010).CrossRefGoogle Scholar
[20] Peres, N.M.R., Rev. Mod. Phys. 82, 2673 (2010).CrossRefGoogle Scholar
[21] Incze, A., Pasturel, A., and Chatillon, C., Appl. Surf. Sci. 177, 226 (2001).CrossRefGoogle Scholar
[22] Yu, S.S., Zheng, W.T., and Jiang, Q., IEEE T. Nanotechnol. 7, 628 (2008).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *