Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.268 Render date: 2021-11-28T18:39:05.604Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

The Transition Between Amorphous Regrowth and Explosive Crystallization

Published online by Cambridge University Press:  28 February 2011

J. J. P. Bruines
Affiliation:
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands.
R. P. M. van Hal
Affiliation:
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands.
B. H. Koek
Affiliation:
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands.
M. P. A. Viegers
Affiliation:
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands.
H. M. J. Boots
Affiliation:
Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands.
Get access

Abstract

The transition between amorphous regrowth and explosive crystallization of a 220nm thick amorphous Si layer on a crystalline Si substrate has been studied using time-resolved reflectivity, transmission electron microscopy, and Rutherford backscattering spectroscopy. Upon irradiation by 7.5ns FWHM pulses from a frequency-doubled Nd:YAG laser, interferences in the reflectivity indicate growth of amorphous Si from the surface. The observation of a narrow Cu peak, buried below the surface, points towards solidification from both the rear and the front. Transmission electron microscopy studies revealed the occurrence of small patches of polycrystalline Si. The relative amount of this polycrystalline Si is increased by longer laser pulses, higher substrate temperatures, and thicker amorphous Si layers. The results are discussed in terms of the temperature distribution and the time available for the nucleation of polycrystalline Si at the liquid-solid interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cullis, A.G., Webber, H.C., and Chew, N.G., Appl. Phys. Lett. 36, 547 (1980).CrossRefGoogle Scholar
2. Baeri, P., Foti, G., Poate, J.M., and Cullis, A.G. in Laser and Electron-Beam Solid Interactions and Materials Processing, edited by Gibbons, J.F., Hess, L.D., and Sigmon, T.W. (North-Holland, New York, 1981), p.39.Google Scholar
3. Narayan, J. and White, C.W., Appl. Phys. Lett. 44, 35 (1984).CrossRefGoogle Scholar
4. Lowndes, D.H., Wood, R.F., and Narayan, J., Phys. Rev Lett. 52, 561 (1984).CrossRefGoogle Scholar
5. Lowndes, D.H., Wood, R.F., White, C.W., and Narayan, J., Mat. Res. Soc. Symp. Proc. 23, 99 (1984).CrossRefGoogle Scholar
6. Narayan, J., Pennycook, S.J., Fathy, D., and Holland, O.W., J. Vac. Sci. Technol. A2, 1495 (1984).CrossRefGoogle Scholar
7. Narayan, J., White, C.W., Aziz, M.J., Stritzker, B., and Walthuis, A., J. Appl. Phys. 57, 564 (1985).CrossRefGoogle Scholar
8. Bartsch, H., Andrä, G., and Glaser, E., Phys. Stat. Sol. (a) 94, 773 (1986).CrossRefGoogle Scholar
9. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984)CrossRefGoogle Scholar
10. Sinke, W. and Saris, F.W., Phys. Rev. Lett. 53, 2121 (1984). The pulselength mentioned in this text (20 ns) is incorrect. The correct value is 32 ns.CrossRefGoogle Scholar
11. Wood, R.F., Lowndes, D.H., and Narayan, J., Appl. Phys. Lett. 44, 770 (1984).CrossRefGoogle Scholar
12. Bruines, J.J.P., van Hal, R.P.M., Boots, H.M.J., and Wolter, J. in Energy Beam-Solid Interaction and Transient Thermal Processing, edited by (Nguyen, V.T. and Cullis, A.C. (Les éditions des physique, Les Ullis Cedex, 1986), p. 525.Google Scholar
13. Geiler, H.-D., Glaser, E., Götz, G., and Wagner, M., J. Appl. Phys. 59, 3091 (1986).CrossRefGoogle Scholar
14. Wagner, M., Geiler, H.-D., and Götz, G., Phys. Stat. Sol. (a) 92, 413 (1986).CrossRefGoogle Scholar
15. Glaser, E., Andra, G., Bartsch, H., Drenda, K., and Götz, G., Phys. Stat. Sol. (a), 94, 781 (1986).CrossRefGoogle Scholar
16. Lowndes, D.H., Jellison, G.E. Jr, Pennycook, S.J., Withrow, S.P., and Mashburn, D.N., Appl. Phys. Lett. 48, 1389 (1986).CrossRefGoogle Scholar
17. Bruines, J.J.P., van Hal, R.P.M., Boots, H.M.J., Polman, A., and Saris, F.W., Appl. Phys. Lett. 49, 1160 (1986).CrossRefGoogle Scholar
18. Campisano, S.U., Jacobson, D.C., Poate, J.M., Cullis, A.G., and Chew, N.G., Appl. Phys. Lett. 46, 846 (1985).CrossRefGoogle Scholar
19. Bruines, J.J.P., van Hal, R.P.M., Boots, H.M.J., Sinke, W., and Saris, F.W., Appl. Phys. Lett. 48,1254 (1986).CrossRefGoogle Scholar
20. Peercy, P.S., Poate, J.M., Thompson, M.O., and Tsao, J.Y., Appl. Phys. Lett. 48, 1651 (1986).CrossRefGoogle Scholar
21. Narayan, J., J. Vac. Sci. Technol. A4, 61 (1986).CrossRefGoogle Scholar
22. Viegers, M.P.A., Koek, B.H., Bruines, J.J.P., van Hal, R.P.M., and Boots, H.M.J., Proc. Xlth Int. Cong. on Electron Microscopy, Kyoto 1986, page 1521.Google Scholar
23. Turnbull, D. in Metastable Materials Formation by Ion Implantation, edited by Picraux, S.T. and Choyke, W.J., Mat. Res. Soc. Symp. Proc. 7, 103 (1982).CrossRefGoogle Scholar
24. Campisano, S.U. in Energy Beam-Solid Interaction and Transient Thermal Processing, edited by Nguyen, V.T. and Cullis, A.C. (Les éditions des physique, Les Ullis Cedex, 1986), p.57.Google Scholar
25. Tsao, J.Y., Aziz, M.J., Thompson, M.O., and Peercy, P.S., Phys. Rev. Lett. 56, 2712 (1986).CrossRefGoogle Scholar
26. Baglay, B.G. and Chen, H.S., in Laser-Solid Interactions and Laser Processing, edited by Ferris, S.D., Leamy, H.J., and Poate, J.M., AIP Conf. Proc. 50, 97 (1979).Google Scholar
27. Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacobson, D.C., Appl.Phys. Lett. 42, 698 (1983).CrossRefGoogle Scholar
28. Wood, R.F. and Geist, G.A., Phys. Rev. B 34, 2606 (1986).CrossRefGoogle Scholar
29. Wood, R.F. and Geist, G.A., Phys. Rev. Lett. 57, 873 (1986).CrossRefGoogle Scholar
30. Sharev, K.M., Baum, B.V., and Gel'd, P.V., Sov. Phys. Solid State 16, 2111 (1975)Google Scholar
31. Jellison, G.E. Jr, and Modine, F.A., Appl. Phys. Lett. 41, 180 (1982).CrossRefGoogle Scholar
32. Jellison, G.E. Jr, in Semiconductors and Semimetals, edited by Wood, R.F., White, C.W., and Young, R.T. (Academic Press, New York 1984), volume 23, page 95.Google Scholar
33. Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., and Jacobson, D.C., Phys. Rev. Lett. 50, 896 (1983).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Transition Between Amorphous Regrowth and Explosive Crystallization
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Transition Between Amorphous Regrowth and Explosive Crystallization
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Transition Between Amorphous Regrowth and Explosive Crystallization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *