Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T19:38:23.326Z Has data issue: false hasContentIssue false

Transient Enhanced Diffusion of Dopants in Preamorphised Si Layers

Published online by Cambridge University Press:  15 February 2011

A. Claverie
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
C. Bonafos
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
M. Omri
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
B. De Mauduit
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
G. Ben Assayag
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
A. Martinez
Affiliation:
LAAS/CNRS, 7 avenue du Colonel Roche, 31077 Toulouse France
D. Alquier
Affiliation:
LAAS/CNRS, 7 avenue du Colonel Roche, 31077 Toulouse France
D. Mathiot
Affiliation:
Laboratoire Phase, CNRS, 23 rue du Loess, 67037 Strasbourg France
Get access

Abstract

Transient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects.

For this reason, we discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphised Si layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cowern, N. E. B., Janssen, K. T. F. and Jos, H. F. F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
2. Marou, F., Claverie, A., Salles, Ph. and Martinez, A., Nucl. Inst. and Meth. in Phys. Res. B55 (1991) 655.Google Scholar
3. Listebarger, J. K., Jones, K. S. and Slinkman, J. A., J. Appl. Phys. 73 (1993) 4815.Google Scholar
4. Eaglesham, D. J., Stolk, P. A., Gossmann, H. J. and Poate, J. M., Appl. Phys. Lett. 65 18 (1994) 2305.Google Scholar
5. Jones, K. S. and Venable, D., J. Appl. Phys. 69 (5) (1991) 2931.Google Scholar
6. Bonafos, C., Claverie, A., Martinez, A., Faye, M. M., Bergaud, C. and Mathiot, D., Mat. Sci. and Eng. B 106 (1995) 222.Google Scholar
7. Claverie, A., Bonafos, C., Alquier, D. and Martinez, A., Solid State Phenomena 47–48 (1996) 195.Google Scholar
8. Law, M. E., Rafferty, C. S. and Dutton, R. W., SUPREM IV User's Manual (Standford Univ., 1988).Google Scholar
9. Gerodolle, A., Corbex, C., Poncet, A., Tedron, T. and Martin, S., in: Software Tools for Process, Device, and Circuit Modelling, ed. W., Crans (Boole, Dublin 1989).Google Scholar
10. Software for Technology Optimization in Research and Manufacturing (ESPRIT Project 2197) User's guide (March 1993).Google Scholar
11. de Mauduit, B., Ladnab, L., Bergaud, C., Faye, M.M., Martinez, A. and Claverie, A., Nucl. Inst. and Meth. in Phys. Res. B84 (1994) 190.Google Scholar
12. Takeda, S., Jpn. J. Appl. Phys. 30 L639 (1991).Google Scholar
13. Kohyama, M. and Takeda, S., Solid State Phenomena 37–38 (1994) 163.Google Scholar
14. LaAnab, L., Bergaud, C., Bonafos, C., Martinez, A. and Claverie, A., Nucl. Inst. and Method in Phys. Res.B96. (1995) 236.Google Scholar
15. Biersack, J. P. and Haggmark, L. G., Nucl. Intr. and Meth. 174 (1980) 257.Google Scholar
16. Faye, M. M., LaAnab, L., Vieu, C., Beauvillain, J. and Claverie, A., Materials Science and Engineering B21 (1993) 284.Google Scholar
17. Jones, K. S. and Venables, D., J. Appl. Phys. 69 (1991) 2931.Google Scholar
18. Laânab, L., Bergaud, C., Faye, M. M., Faure, J., Martinez, A. and Claverie, A., Mat. Res. Soc. Symp. Proc. 279 (1993) 381.Google Scholar
19. Claverie, A., Laânab, L., Bonafos, C., Bergaud, C., Martinez, A. and Mathiot, D., Nucl. Inst. and Method in Phys. Res. B96 (1995) 202.Google Scholar
20. Giles, M. D., J. Electrochem. Soc. 138 (1991) 1160.Google Scholar
21. Stolk, P. A., Gossmann, H. J., Eaglesham, D. J., Poate, J. M., Nucl. Inst. and Method in Phys. Res. B96 (1995) 187.Google Scholar
22. Eaglesham, D. J., Stolk, P. A., Gossmann, H. J., Haynes, T. E., Poate, J. M., Nucl. Inst. and Method in Phys. Res. B 106 (1995) 191.Google Scholar
23. Liu, J., Krishnamoorthy, V. and Jones, K. S., 1IT96 Proceedings (1996) in press.Google Scholar
24. Lifshitz, I. M., Slyosov, V. V., J. Phys. Chem. Solids 19 35 (1961).Google Scholar
25. Wagner, C., Elektrochem, Z. 65 581 (1961).Google Scholar
26. Kalhweit, M., Adv. in Colloid and Interface Science 5 1 (1975).Google Scholar
27. Burton, B., Speight, M. V., Phil. Mag. A 53 385 (1985).Google Scholar
28. Hu, S.M., Materials Research Society Symposia Proceedings 2 333 (1980).Google Scholar
29. Dunham, S. T., Appl. Phys. Lett. 63 (4)464 (1993).Google Scholar
30. Bonafos, C., Claverie, A., Mathiot, D., J. Appl. Phys. (submitted).Google Scholar
31. Huang, R. Y. S. and Dutton, R. W., J. Appl. Phys. 74, (9) 5821 (1993).Google Scholar
32. Meekison, C. D., Phil. Mag. A, 69 (2) 379 (1994).Google Scholar
33. Seibt, M., Solid State Phenomena 32–33 463 (1993).Google Scholar
34. Kirchner, H. O. K., Acta Met. 21 85 (1973).Google Scholar
35. Hu, S.M., Materials Science and Engineering R13 n° 3–4 105 (1994).Google Scholar
36. Cowern, N. E. B., van de Walle, G. F. A., Zalm, P. C. and Vandenhout, D. E. W., Appi. Phys. Lett. 65, 2981 (1994).Google Scholar
37. Cowern, N. E. B., Huizing, H. G. A. and Stolk, P. A., Mat. Sci. and Eng. B (1995) in print.Google Scholar
38. Bonafos, C., Alquier, D., Martinez, A., Mathiot, D. and ClaverieNucl, A.. Intr. and Meth. in Phys. Res. B112 (1996) 129.Google Scholar
39. Bonafos, C., de Mauduit, B., Omri, M., BenAssayag, G., Alquier, D., Martinez, A., Mathiot, D. and Claverie, A., 1IT96 Proceedings (in print).Google Scholar
40. Omri, M., Bonafos, C., Claverie, A., Nejim, A., Cristiano, F., Alquier, D., Martinez, A. and Cowern, N. E. B., Mat. Sci. and Eng. B (1995) in print.Google Scholar
41. Jones, K. S., Prussin, S., Venables, D., Mat. Res. Soc. Symp. Proc. 277 (1988).Google Scholar
42. Zhang, L. H., Jones, K. S., Chi, P. H., Simons, O. S., Appl. Phys. Lett. 67, 2025 (1995).Google Scholar
43. Kampmann, L., Kahlweit, M., Ber Bunsenges Physik Chem., 71, 78 (1967).Google Scholar
44. Bonafos, C., Omri, M., Alquier, D., Martinez, A., Mathiot, D. and Claverie, A., J. Appl. Phys. (submitted).Google Scholar