Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-65n5b Total loading time: 0.486 Render date: 2021-06-13T18:49:52.659Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Transient Enhanced Diffusion of Dopants in Preamorphised Si Layers

Published online by Cambridge University Press:  03 September 2012

A. Claverie
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
C. Bonafos
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
M. Omri
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
B. De Mauduit
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
G. Ben Assayag
Affiliation:
CEMES/CNRS, BP 4347 F-31055 Toulouse Cédex France
A. Martinez
Affiliation:
LAAS/CNRS, 7 avenue du Colonel Roche, 31077 Toulouse France
D. Alquier
Affiliation:
LAAS/CNRS, 7 avenue du Colonel Roche, 31077 Toulouse France
D. Mathiot
Affiliation:
Laboratoire Phase, CNRS, 23 rue du Loess, 67037 Strasbourg France
Get access

Abstract

Transient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects.

For this reason, we discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphised Si layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Cowern, N. E. B., Janssen, K. T. F. and Jos, H. F. F., J. Appl. Phys. 68, 6191 (1990).CrossRefGoogle Scholar
2. Marou, F., Claverie, A., Salles, Ph. and Martinez, A., Nucl. Inst. and Meth. in Phys. Res. B55 (1991) 655.CrossRefGoogle Scholar
3. Listebarger, J. K., Jones, K. S. and Slinkman, J. A., J. Appl. Phys. 73 (1993) 4815.CrossRefGoogle Scholar
4. Eaglesham, D. J., Stolk, P. A., Gossmann, H. J. and Poate, J. M., Appl. Phys. Lett. 65 18 (1994) 2305.CrossRefGoogle Scholar
5. Jones, K. S. and Venable, D., J. Appl. Phys. 69 (5) (1991) 2931.CrossRefGoogle Scholar
6. Bonafos, C., Claverie, A., Martinez, A., Faye, M. M., Bergaud, C. and Mathiot, D., Mat. Sci. and Eng. B 106 (1995) 222.Google Scholar
7. Claverie, A., Bonafos, C., Alquier, D. and Martinez, A., Solid State Phenomena 47–48 (1996) 195.Google Scholar
8. Law, M. E., Rafferty, C. S. and Dutton, R. W., SUPREM IV User's Manual (Standford Univ., 1988).Google Scholar
9. Gerodolle, A., Corbex, C., Poncet, A., Tedron, T. and Martin, S., in: Software Tools for Process, Device, and Circuit Modelling, ed. Crans, W. (Boole, Dublin 1989).Google Scholar
10. Software for Technology Optimization in Research and Manufacturing (ESPRIT Project 2197) User's guide (March 1993).Google Scholar
11. de Mauduit, B., Laanab, L., Bergaud, C., Faye, M.M., Martinez, A. and Claverie, A., Nucl. Inst. and Meth. in Phys. Res. B84 (1994) 190.CrossRefGoogle Scholar
12. Takeda, S., Jpn. J. Appl. Phys. 30 L639 (1991).CrossRefGoogle Scholar
13. Kohyama, M. and Takeda, S., Solid State Phenomena 37–38 (1994) 163.CrossRefGoogle Scholar
14. La^nab, L., Bergaud, C., Bonafos, C., Martinez, A. and Claverie, A., Nucl. Inst. and Method in Phys. Res.B96. (1995) 236.CrossRefGoogle Scholar
15. Biersack, J. P. and Haggmark, L. G., Nucl. Intr. and Meth. 174 (1980) 257.CrossRefGoogle Scholar
16. Faye, M. M., Laanab, L., Vieu, C., Beauvillain, J. and Claverie, A., Materials Science and Engineering B21 (1993) 284.CrossRefGoogle Scholar
17. Jones, K. S. and Venables, D., J. Appl. Phys. 69 (1991) 2931.CrossRefGoogle Scholar
18. Laânab, L., Bergaud, C., Faye, M. M., Faure, J., Martinez, A. and Claverie, A., Mat. Res. Soc. Symp. Proc. 279 (1993) 381.CrossRefGoogle Scholar
19. Claverie, A., Laanab, L., Bonafos, C., Bergaud, C., Martinez, A. and Mathiot, D., Nucl. Inst. and Method in Phys. Res. B96 (1995) 202.Google Scholar
20. Giles, M. D., J. Electrochem. Soc. 138 (1991) 1160.CrossRefGoogle Scholar
21. Stolk, P. A., Gossmann, H. J., Eaglesham, D. J., Poate, J. M., Nucl. Inst. and Method in Phys. Res. B96 (1995) 187.CrossRefGoogle Scholar
22. Eaglesham, D. J., Stolk, P. A., Gossmann, H. J., Haynes, T. E., Poate, J. M., Nucl. Inst. and Method in Phys. Res. B106 (1995) 191.Google Scholar
23. Liu, J., Krishnamoorthy, V. and Jones, K. S., IIT96 Proceedings (1996) in press.Google Scholar
24. Lifshitz, I. M., Slyosov, V. V., J. Phys. Chem. Solids 19 35 (1961).CrossRefGoogle Scholar
25. Wagner, C., Elektrochem, Z. 65 581 (1961).Google Scholar
26. Kalhweit, M., Adv. in Colloid and Interface Science 5 1 (1975).CrossRefGoogle Scholar
27. Burton, B., Speight, M. V., Phil. Mag. A 53 385 (1985).Google Scholar
28. Hu, S.M., Materials Research Society Symposia Proceedings 2 333 (1980).CrossRefGoogle Scholar
29. Dunham, S. T., Appl. Phys. Lett. 63 (4)464 (1993).CrossRefGoogle Scholar
30. Bonafos, C., Claverie, A., Mathiot, D., J. Appl. Phys. (submitted).Google Scholar
31. Huang, R. Y. S. and Dutton, R. W., J. Appl. Phys. 74, (9) 5821 (1993).CrossRefGoogle Scholar
32. Meekison, C. D., Phil. Mag. A, 69 (2) 379 (1994).CrossRefGoogle Scholar
33. Seibt, M., Solid State Phenomena 32–33 463 (1993).CrossRefGoogle Scholar
34. Kirchner, H. O. K., Acta Met. 21 85 (1973).CrossRefGoogle Scholar
35. Hu, S.M., Materials Science and Engineering R13 n° 3–4 105 (1994).CrossRefGoogle Scholar
36. Cowern, N. E. B., van de Walle, G. F. A., Zalm, P. C. and Vandenhout, D. E. W., Appl. Phys. Lett. 65, 2981 (1994).CrossRefGoogle Scholar
37. Cowern, N. E. B., Huizing, H. G. A. and Stolk, P. A., Mat. Sci. and Eng. B (1995) in print.Google Scholar
38. Bonafos, C., Alquier, D., Martinez, A., Mathiot, D. and A. ClaverieNucl. Intr. and Meth. In Phys. Res. B112 (1996) 129.CrossRefGoogle Scholar
39. Bonafos, C., de Mauduit, B., Omri, M., BenAssayag, G., Alquier, D., Martinez, A., Mathiot, D. and Claverie, A., IIT96 Proceedings (in print).Google Scholar
40. Omri, M., Bonafos, C., Claverie, A., Nejim, A., Cristiano, F., Alquier, D., Martinez, A. and Cowern, N. E. B., Mat. Sci. and Eng. B (1995) in print.Google Scholar
41. Jones, K. S., Prussin, S., Venables, D., Mat. Res. Soc. Symp. Proc. 277 (1988).Google Scholar
42. Zhang, L. H., Jones, K. S., Chi, P. H., 0. Simons, S., Appl. Phys. Lett. 67, 2025 (1995).Google Scholar
43. Kampmann, L., Kahlweit, M., Ber Bunsenges Physik Chem., 71, 78 (1967).Google Scholar
44. Bonafos, C., Omri, M., Alquier, D., Martinez, A., Mathiot, D. and Claverie, A., J. Appl. Phys. (submitted).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Transient Enhanced Diffusion of Dopants in Preamorphised Si Layers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Transient Enhanced Diffusion of Dopants in Preamorphised Si Layers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Transient Enhanced Diffusion of Dopants in Preamorphised Si Layers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *