Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T01:12:50.362Z Has data issue: false hasContentIssue false

Towards a Si/SiGe Quantum Cascade Laser for Terahertz Applications

Published online by Cambridge University Press:  01 February 2011

D.J. Paul
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, U.K.
S.A. Lynch
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, U.K.
P. Townsend
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, U.K.
Z. Ikonic
Affiliation:
Institute for Microwaves and Photonics, University of Leeds, Leeds, LS2 9JT, U.K.
R.W. Kelsall
Affiliation:
Institute for Microwaves and Photonics, University of Leeds, Leeds, LS2 9JT, U.K.
P. Harrison
Affiliation:
Institute for Microwaves and Photonics, University of Leeds, Leeds, LS2 9JT, U.K.
S.L. Liew
Affiliation:
Department of Electronics and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.
D.J. Norris
Affiliation:
Department of Electronics and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.
A.G. Cullis
Affiliation:
Department of Electronics and Electrical Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.
J. Zhang
Affiliation:
Blackett Laboratory, Imperial College of Science, technology and Medicine, Prince Consort Road, London, SW7 2BZ, U.K.
M. Bain
Affiliation:
Electrical and Electronic Engineering, Queens University Belfast, Belfast, BT9 5AH, U.K.
H.S. Gamble
Affiliation:
Electrical and Electronic Engineering, Queens University Belfast, Belfast, BT9 5AH, U.K.
W.R. Tribe
Affiliation:
TeraView Ltd., 302 to 304 Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, U.K.
D.D. Arnone
Affiliation:
TeraView Ltd., 302 to 304 Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, U.K.
Get access

Abstract

While electroluminescence has been demonstrated at terahertz frequencies from Si/SiGe quantum cascade emitters, to date no laser has been achieved due to poor vertical confinement of the optical mode. A method of increasing the vertical confinement of the optical mode for a Si/SiGe quantum cascade laser is demonstrated using silicon-on-silicide technology. Such technology is used with epitaxial growth to demonstrate a strain-symmetrised 600 period Si/SiGe quantum cascade interwell emission and the polarisation is used to demonstrate the optical confinement. Electroluminescence is demonstrated at ∼3 THz (∼100 μm) from an interwell quantum cascade emitter structure. Calculated model overlap and waveguide losses for ridge waveguides are comparable to values from GaAs quantum cascade lasers demonstrated at terahertz frequencies. The effects of high doping levels in Si/SiGe quantum cascade structures is also investigated with impurity emission demonstrated rather than intersubband emission for the highest doping levels used in the cascade active regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arnone, D.D. et al., “Terahertz imaging comes into view,” Physics World 13(4), April (2000), pp3540.Google Scholar
2. Kemp, M.C., Taday, P.F., Cole, B.E., Cluff, J.A., Fitzgerald, A.J. and Tribe, W.R., Proc. SPIE 5070, 44, (2003).Google Scholar
3. Vanderberg, L.A., Appl. Spectroscopy 54, 376A, (2000).Google Scholar
4. Woodward, R.M., Cole, B.E., Wallace, V.P., Pye, R.J., Arnone, D.D., Linfield, E.H. and Pepper, M., Phys. Med. Biol 47, 3853, (2002).Google Scholar
5. Crawley, D.A., Longbottom, C., Wallace, V.P., Cole, B., Arnone, D.D. and Pepper, M., J. Biomedical Opt. 8, 303, (2003).Google Scholar
7. Kohler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C. and Rossi, F., Nature 417, 156, (2002).Google Scholar
8. Williams, B.S. et al., Appl. Phys. Lett. 83, 2124, (2003).Google Scholar
9. Dehlinger, G., Dieh, L., Gennse, U., Sigg, H., Faist, J., Ensslin, K., Grützmacher, D. and Müller, E., Science 290, 2277, (2000).Google Scholar
10. Murzyn, P., Pidgeon, C.R., Wells, J.-P.R., Bradley, I.V., Ikonic, Z., Kelsall, R.W., Harrison, P., Lynch, S.A., Paul, D.J., Arnone, D.D., Norris, D.J. and Cullis, A.G., Appl. Phys. Lett. 80, 1456, (2002).Google Scholar
11. Murdin, B.N., Heiss, W., Langerak, C.J.G.M., Lee, S.-C., Galbraith, I., Strasser, G., Gornik, E., Helm, M. and Pidgeon, C.R., Phys. Rev. B, 55, 5171, (1997).Google Scholar
12. Lynch, S.A., Bates, R., Paul, D.J., Norris, D.J., Cullis, A.G., Ikonic, Z., Kelsall, R.W., Harrison, P., Arnone, D.D., Pidgeon, C.R., Appl. Phys. Lett. 81, 1543, (2002).Google Scholar
13. Bates, R., Lynch, S.A., Paul, D.J., Ikonic, Z., Kelsall, R.W., Harrison, P., Liew, S.L., Norris, D.J., Cullis, A.G., Tribe, W.R. and Arnone, D.D., Appl. Phys. Lett. 83, 4092, (2003).Google Scholar
14. Ikonic, Z., Kelsall, R.W. and Harrison, P., Semicond. Sci. Technol. 19, 76, (2004).Google Scholar
15. Gamble, H.S., Armstrong, B.M., Baine, P., Bain, M. and McNeill, D.W., Solid State Elec. 45, 551, (2001).Google Scholar
16. Lynch, S.A., Dhillon, S.S., Bates, R., Paul, D.J., Arnone, D.D., Robbins, D.J., ikonic, Z., Kelsall, R.W., Harrison, P., Norris, D.J., Cullis, A.G., Pidgeon, C.R., Murzyn, P. and Loudon, A., Mat. Sci. Engineering B 89, 10, (2002).Google Scholar
17. Paul, D.J., Lynch, S.A., Bates, R., Ikonic, Z., Kelsall, R.W., Harrison, P., Norris, D.J., Liew, S.L., Cullis, A.G., Arnone, D.D., Pidgeon, C.R., Murzyn, P., Wells, J.P-R. and Bradley, I.V., Physica E 16, 147 (2003).Google Scholar
18. Hrostowski, H.J., “Infrared absorption of semiconductors”, Semiconductors, ed. Hannay, N.B. (Reinhold Publishing Corp. 1959) pp.437481.Google Scholar
19. Jagannath, C., Grabowski, Z.W. and Ramdas, A.K., Phys. Rev. B 23, 2082 (1981).Google Scholar