Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-29T09:01:00.689Z Has data issue: false hasContentIssue false

Three-Step Deposition Method for Improvement of the Dielectric Properties of BST Thin Films

Published online by Cambridge University Press:  29 February 2012

H. Liu
Affiliation:
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
V. Avrutin
Affiliation:
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
C. Zhu
Affiliation:
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
J.H. Leach
Affiliation:
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
E. Rowe
Affiliation:
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
L. Zhou
Affiliation:
Physics Department, Arizona State University, Tempe, AZ 85287 USA.
D. Smith
Affiliation:
Physics Department, Arizona State University, Tempe, AZ 85287 USA.
Ü. Özgür
Affiliation:
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
H. Morkoç
Affiliation:
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
Get access

Abstract

Epitaixal Ba0.5Sr0.5TiO3 (BST) thin films were grown on SrTiO3 (STO) and DyScO3 substrates by radio-frequency magnetron sputtering system using three-step method which involves a relatively low-temperature (573-773 K) growth of a BST interlayer sandwiched between two BST layers deposited at a high substrate temperature of 1068 K. X-ray diffraction measurement showed different strains on the films with interlayers grown at different temperatures. Post-growth thermal treatment reduced film strain to a great extent (the film strain of a tri-layer film with a 773 K grown interlayer is only -0.001). Comparing with the control films grown at high temperature, three-step technique improved the dielectric properties, especially increased dielectric constant by 60% for BST/STO and 31% for BST/DyScO3, respectively. High dielectric constant of 1631.4 and its tuning of 36.7% were achieved on the BST/STO with an interlayer grown on 773 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Ahn, C. H., Rabe, K. M. and Triscone, J. M., Science 303, 488 (2004)Google Scholar
2. Leach, J. H., Liu, H., Avrutin, V., Xiao, B., Ozgur, U., Morkoc, H., Das, J., Song, Y. Y. and Patton, C. E., J. Appl. Phys. 107, 084511 (2010)Google Scholar
3. Izyumskaya, N., Alivov, Ya. and Morkoc, H., Crit. Rev. Solid State Mater. Sci. 34, 89 (2009)Google Scholar
4. Merz, W. J., Phys. Rev. 77, 52 (1950)Google Scholar
5. Brown, R. F. andCan, J.., Phys. 39, 741 (1961)Google Scholar
6. Ponchel, L. F., Wang, G., Remiens, D., Legier, J., Chateigner, D. and Dong, X., Appl. Phys. Letters 97, 162909 (2010)Google Scholar
7. Ha, J., Choi, J., Kang, C., Karmanenko, S. F., Yoon, S., Choi, D. and Kim, H., Jap. J. Appl. Phys. 44, L1196 (2005)Google Scholar
8. Yang, L., Wang, G., Dong, X. and Remiens, D., J. Am. Ceram. Soc. 93, 2136 (2010)Google Scholar
9. Chang, W., Gilmore, C. M., Kim, W. J., Pond, J. M., Kirchoefer, S. W., Qadri, S.B., Chirsey, D. B. and Horwitz, J. S., J. Appl. Phys. 87, 3044 (2009)Google Scholar
10. Shaw, T. M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R. B. and Baniecki, J. D., Appl. Phys. Letters 75, 2129 (2009)Google Scholar
11. Jackson, T. J. and Jones, I. P., J. Mater. Sci. 44, 5288 (2009)Google Scholar
12. Cao, L. Z., Meng, Q. D., Fu, W. Y., Wang, S. F., Lei, M., Cheng, B. L., Zhou, Y. L. and Chen, Z. H., Physica B 393, 175 (2007)Google Scholar
13. Leach, J. H., Liu, H., Avrutin, V., Rowe, E., Ozgur, U., Morkoc, H., Song, Y. Y. and Wu, M., J. Appl. Phys. 108, 064106 (2010)Google Scholar
14. Segmuller, A., J. Vac. Sci. Technol. A 9, 2477 (1991)Google Scholar
15. Lide, D. R., Handbook of Chemistry and Physics 76th ed. (CRC, Boca Raton, FL, 1995)Google Scholar
16. Srivastava, A., Craciun, V., Howard, J. M. and Singh, R. K., Appl. Phys. Lett. 75, 3002 (1999)Google Scholar
17. Pertsev, N.A., Zembilgotov, A.G. and Tagantsev, A.K., Phys. Rev. Lett. 80, 1988 (1998)Google Scholar
18. Alldredge, L.M.B., Chang, W., Kirchoefer, S. W. and Pond, J. M., Appl. Phys. Letters 94, 052904, 2009 Google Scholar
19. Chang, S. and Ya-min Lee, J., Appl. Phys. Lett. 80, 655 (2002)Google Scholar
20. Mesic, B. and Schroeder, H., J. Appl. Phys. 110, 064117 (2011)Google Scholar
21. Carlson, C. M., Rivkin, T. V., Parilla, P. A., Perkins, J. D., Ginley, D. S., Kozyrev, A. B., Oshadchy, V. N. and Pavlov, A. S., Appl. Phys. Lett. 76, 1920 (2000)Google Scholar
22. Wang, S.Y., Qiu, X., Liu, W.F., Zhu, Y. and Li, D.J., J. Cryst. Growth 324, 130 (2011)Google Scholar