Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T00:27:49.213Z Has data issue: false hasContentIssue false

Three-Dimensional Electromagnetic Metamaterials with Non-Maxwellian Effective Fields

Published online by Cambridge University Press:  01 February 2011

Jonghwa Shin
Affiliation:
joshin@stanford.edu, Stanford University, Ginzton Lab, 450 Via Palou, Stanford University, CA, 94305, United States, 650-723-9100
Jung-Tsung Shen
Affiliation:
jushen@gmail.com, Stanford University, Ginzton Lab, Stanford University, CA, 94305, United States
Shanhui Fan
Affiliation:
shanhui@stanford.edu, Stanford University, Ginzton Lab, Stanford University, CA, 94305, United States
Get access

Abstract

It is commonly assumed that the long-wavelength limit of a metamaterial can always be described in terms of effective permeability and permittivity tensors. Here we report that this assumption is not necessary–there exists a new class of metamaterial consisting of several interlocking disconnected metal networks, for which the effective long-wavelength theory is local, but the effective field is non-Maxwellian, and possesses much more internal degrees of freedom than effective Maxwellian fields in a local homogeneous medium.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, D. R. et al. Science 305, 788 (2004).Google Scholar
2. Smith, D. R. and Pendry, J. B., J. Opt. Soc. Am. B 23, 391 (2006).Google Scholar
3. Milton, G. W., The theory of composites (Cambridge Univ., New York, 2001).Google Scholar
4. Smith, D. R. et al. , Phys. Rev. Lett. 84, 4184 (2000).Google Scholar
5. Smith, D. R. and Schurig, D., Phys. Rev. Lett. 90, 077405 (2003)Google Scholar
6. Shen, J. T. et al. , Phys. Rev. Lett. 94, 197401 (2005).Google Scholar
7. Schwarts, B. T. and Piestun, R., J. Opt. Soc. Am. B 20, 2448 (2003)Google Scholar
8. Grzegorczyk, T. M., Thomas, Z. M., and J. A. Kong, Appl. Phys. Lett. 86, 251909 (2005).Google Scholar
9. Belov, P. A. et al. , Phys. Rev. B 67, 113103 (2003).Google Scholar
10. Pokrovsky, A. L. and Efros, A. L., Phys. Rev. B 65, 045110 (2002).Google Scholar
11. Simovski, C. R. and Belov, P. A., Phys. Rev. E 70, 046616 (2004).Google Scholar
12. Nicorovici, N. A., McPhedran, R. C., and Botten, L. C., Phys. Rev. Lett. 75, 1507 (1995).Google Scholar
13. Hamermesh, M., Group theory and its application to physical problems (Dover, New York, 1989).Google Scholar
14. Inan, U. S. and Inan, A. S., Engineering electromagnetics (Prentice Hall, Upper Saddle River, NJ, 1998).Google Scholar
15. Fan, S. et al. , Phys. Rev. B 54, 011245 (1996).Google Scholar
16. Ibanescu, M. et al. , Science 289, 415 (2000).Google Scholar
17. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
18. Yamamoto, Y. and Slusher, R. E., Phys. Today 46, 66 (1993).Google Scholar
19. Zee, , Quantum field theory in a nutshell, (Princeton Univ., Princeton, NJ, 2003)Google Scholar
20. Cromwell, P. R., Beltrami, E., and Rampichini, M., Mathematical Intelligencer 20:1, 53 (1998).Google Scholar
21. Chan, V. Z-H et al. , Science 286, 1716 (1999).Google Scholar
22. Anderson, P. W., Science 177, 393 (1972).Google Scholar