Hostname: page-component-5db6c4db9b-bhjbq Total loading time: 0 Render date: 2023-03-26T04:23:27.884Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Three-Dimensional Electromagnetic Metamaterials with Non-Maxwellian Effective Fields

Published online by Cambridge University Press:  01 February 2011

Jonghwa Shin
Affiliation:
joshin@stanford.edu, Stanford University, Ginzton Lab, 450 Via Palou, Stanford University, CA, 94305, United States, 650-723-9100
Jung-Tsung Shen
Affiliation:
jushen@gmail.com, Stanford University, Ginzton Lab, Stanford University, CA, 94305, United States
Shanhui Fan
Affiliation:
shanhui@stanford.edu, Stanford University, Ginzton Lab, Stanford University, CA, 94305, United States
Get access

Abstract

It is commonly assumed that the long-wavelength limit of a metamaterial can always be described in terms of effective permeability and permittivity tensors. Here we report that this assumption is not necessary–there exists a new class of metamaterial consisting of several interlocking disconnected metal networks, for which the effective long-wavelength theory is local, but the effective field is non-Maxwellian, and possesses much more internal degrees of freedom than effective Maxwellian fields in a local homogeneous medium.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, D. R. et al. Science 305, 788 (2004).CrossRefGoogle Scholar
2. Smith, D. R. and Pendry, J. B., J. Opt. Soc. Am. B 23, 391 (2006).CrossRefGoogle Scholar
3. Milton, G. W., The theory of composites (Cambridge Univ., New York, 2001).Google Scholar
4. Smith, D. R. et al. , Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
5. Smith, D. R. and Schurig, D., Phys. Rev. Lett. 90, 077405 (2003)CrossRefGoogle Scholar
6. Shen, J. T. et al. , Phys. Rev. Lett. 94, 197401 (2005).CrossRefGoogle Scholar
7. Schwarts, B. T. and Piestun, R., J. Opt. Soc. Am. B 20, 2448 (2003)CrossRefGoogle Scholar
8. Grzegorczyk, T. M., Thomas, Z. M., and J. A. Kong, Appl. Phys. Lett. 86, 251909 (2005).CrossRefGoogle Scholar
9. Belov, P. A. et al. , Phys. Rev. B 67, 113103 (2003).CrossRefGoogle Scholar
10. Pokrovsky, A. L. and Efros, A. L., Phys. Rev. B 65, 045110 (2002).CrossRefGoogle Scholar
11. Simovski, C. R. and Belov, P. A., Phys. Rev. E 70, 046616 (2004).CrossRefGoogle Scholar
12. Nicorovici, N. A., McPhedran, R. C., and Botten, L. C., Phys. Rev. Lett. 75, 1507 (1995).CrossRefGoogle Scholar
13. Hamermesh, M., Group theory and its application to physical problems (Dover, New York, 1989).Google Scholar
14. Inan, U. S. and Inan, A. S., Engineering electromagnetics (Prentice Hall, Upper Saddle River, NJ, 1998).Google Scholar
15. Fan, S. et al. , Phys. Rev. B 54, 011245 (1996).CrossRefGoogle Scholar
16. Ibanescu, M. et al. , Science 289, 415 (2000).CrossRefGoogle Scholar
17. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
18. Yamamoto, Y. and Slusher, R. E., Phys. Today 46, 66 (1993).CrossRefGoogle Scholar
19. Zee, , Quantum field theory in a nutshell, (Princeton Univ., Princeton, NJ, 2003)Google Scholar
20. Cromwell, P. R., Beltrami, E., and Rampichini, M., Mathematical Intelligencer 20:1, 53 (1998).CrossRefGoogle Scholar
21. Chan, V. Z-H et al. , Science 286, 1716 (1999).CrossRefGoogle Scholar
22. Anderson, P. W., Science 177, 393 (1972).CrossRefGoogle Scholar