Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-28T01:07:25.772Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Ge-doped Cu3SbSe4

Published online by Cambridge University Press:  08 March 2011

Eric J. Skoug
Affiliation:
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 U.S.A.
Jeffrey D. Cain
Affiliation:
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 U.S.A.
Donald T. Morelli
Affiliation:
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 U.S.A.
Get access

Abstract

Ternary variations of the II-VI zincblende semiconductors have received little attention for thermoelectric applications. Here we present the first systematic doping study on Cu3SbSe4, a zincblende-like ternary semiconductor with a unit cell four times larger than the parent II-VI compounds. The large unit cell of Cu3SbSe4 results in a low room temperature thermal conductivity (~3.0 W/m*K) and its large hole effective mass produces a Seebeck coefficient approaching 500 μV/K in the undoped compound. Our results show that Ge is an effective p-type dopant in Cu3SbSe4, and the power factor reaches nearly 16 μW/cm*K2 at 630K when 3% Ge is added, rivaling that of state-of-the-art thermoelectric materials at this temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, S.H. et al. , Nanotechnology Vol. 19, No. 24 245707 (2008).Google Scholar
2. Quarez, E. et al. , J.Am. Chem. Soc. 2005, 127(25) pp 91779190.Google Scholar
3. Nolas, G.S. et al. , Annu. Rev. Mater. Sci. 1999 29:89116.Google Scholar
4. Nolas, G.S., et al. , J. Appl. Phys. 79(8), 15 April 1996.Google Scholar
5. Wang, X. W. et al. , Appl. Phys. Lett., 2008, 93, 193121 Google Scholar
6. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G. and Ren, Z., Science, 2008, 320, 634 Google Scholar
7. Slack, G.A., Solid State Physics 34 pp 171 (1979).Google Scholar
8. Morelli, D.T. et al. , Physical Review Letters 101, 035901 (2008).Google Scholar
9. Jovovic, V. et al. , Journal of Electronic Materials Vol. 38 No. 7 (2009).Google Scholar
10. Goodman, C.H.L. and Douglas, R.W. Physica (Amsterdam) 20, 1107 (1954)Google Scholar
11. Wernick, J.H. et al. , J. Phys. Chem. Solids 3 157 (1957).Google Scholar
12. Nakanishi, H. et al. Japanese Journal of Applied Physcis Vol. 8, No. 4, 1969.Google Scholar
13. Scott, W. et al. , Mat. Res. Bull. Vol. 8, pp. 12571268, 1973.Google Scholar
14. Pfitzner, A., Z. fur Kristallogr. 209, 685, (1995).Google Scholar
15. Gelbstein, Y. et al. Physica B 363 (2005) 196205.Google Scholar
16. Morelli, D.T., et al. , Phys. Rev. B, Vol. 56, No. 12, 1997.Google Scholar
17. Slack in, G.A.CRC Handbook of Thermoelectrics”, edited by Rowe, D.M., CRC Press, Inc., Salem, MA (1995) pp. 416425.Google Scholar