Skip to main content Accessibility help
×
Home
Hostname: page-component-59df476f6b-m8rdz Total loading time: 0.569 Render date: 2021-05-17T17:25:27.448Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Thermal Transport in MWNT Sheet: Extremely High Radiation From The Carbon Nanotube Surface

Published online by Cambridge University Press:  01 February 2011

Ali E. Aliev
Affiliation:
Ali.Aliev@utdallas.edu, University of Texas at Dallas, NanoTech Institute, 7825 Maccalu blvd., 1506, Dallas, TX, 75252, United States, 9728836543, 9728836529
C. Guthy
Affiliation:
guthyc@seas.upenn.edu, University of Pennsylvania, Dept. of Materials Science and Engineering, Philadelphia, PA, 19104, United States
M. Zhang
Affiliation:
mzhang@utdallas.edu, University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
A. A. Zakhidov
Affiliation:
zakhidov@utdallas.edu, University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
J. E. Fischer
Affiliation:
fischer@seas.upenn.edu, University of Pennsylvania, Dept. of Materials Science and Engineering, Philadelphia, PA, 19104, United States
R. H. Baughman
Affiliation:
ray.baughman@utdallas.edu, University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
Get access

Abstract

Laser flash and self-heating 3ω techniques were employed to determine the anisotropic thermal conductivity and thermal diffusivity of highly oriented free standing multiwalled carbon nanotube (MWNT) sheet drawn from a sidewall of a MWNT forest that was grown by chemical-vapor deposition. The thermal conductivity and the thermal diffusivity along the alignment are 50±5 W/m·K and 45±5 mm2/s, respectively, and are mostly limited by intrinsic defects of individual nanotubes and phonon-phonon interaction within bundles which form the supporting matrix of the MWNT sheet. The long tube-tube overlapping substantially decreases the electrical and thermal interconnection resistances which are usually dominate in randomly deposited mat-like nanotube assemblies. The extremely large surface area of the MWNT sheet leads to excessive heat radiation that dose not allow to transfer the heat energy by means of phonons to distances > 2 mm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Zhang, M., Fang, S., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., Baughman, R. H., Science 309, 1215 (2005).CrossRefGoogle Scholar
2. Nysten, B., Issi, J.-P., Barton, R. Jr., Boyington, D. R., Lavin, J. G., J. Physics D. 24, 714 (1991).CrossRefGoogle Scholar
3. Lu, L., Yi, W., Zhang, D. L., Review of Scientific Instruments 72, 2996 (2001CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermal Transport in MWNT Sheet: Extremely High Radiation From The Carbon Nanotube Surface
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Thermal Transport in MWNT Sheet: Extremely High Radiation From The Carbon Nanotube Surface
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Thermal Transport in MWNT Sheet: Extremely High Radiation From The Carbon Nanotube Surface
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *