Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-2rqk5 Total loading time: 0.179 Render date: 2021-06-24T08:27:20.179Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Theory of Defects, Doping, Surfaces and Interfaces in Wide Gap Nitrides

Published online by Cambridge University Press:  15 February 2011

J. Bernholc
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, Bernholc@ncsu.edu
P. Boguslawski
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, Bernholc@ncsu.edu
E. L. Briggs
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, Bernholc@ncsu.edu
M. Buongiorno Nardelli
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, Bernholc@ncsu.edu
B. Chen
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, Bernholc@ncsu.edu
K. Rapcewicz
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, Bernholc@ncsu.edu
Z. Zhang
Affiliation:
Department of Physics, North Carolina State University Raleigh, NC 27695, Bernholc@ncsu.edu
Corresponding
E-mail address:
Get access

Abstract

The results of extensive theoretical studies of group IV impurities and surface and interface properties of nitrides are presented and compared with available experimental data. Among the impurities, we have considered substitutional C, Si, and Ge. CN is a very shallow acceptor, and thus a promising p-type dopant. Both Si and Ge are excellent donors in GaN. However, in AlGaN alloys the DX configurations are stable for a sufficiently high Al content, which quenches the doping efficiency. At high concentrations, it is energetically favorable for group IV impurities to form nearest-neighbor Xcation-XN pairs. Turning to surfaces, AIN is known to exhibit NEA. We find that the NEA property depends sensitively on surface reconstruction and termination. At interfaces, the strain effects on the band offsets range from 20% to 40%, depending on the substrate. The AIN/GaN/InN interfaces are all of type I, while the A10.5Ga0.5 N/A1N zinc-blende (001) interface may be of type II. Further, the calculated bulk polarizations in wurtzite AIN and GaN are -1.2 and -0.45 μC/cm2, respectively, and the interface contribution to the polarization in the GaN/AlN wurtzite multi-quantum-well is small.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

[1] Davis, R. F., Physica B 185, 1 (1993).CrossRefGoogle Scholar
[2] Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994).CrossRefGoogle Scholar
[3] Nakumura, S. et al., Jpn. J. Appl. Phys. 35, L74 (1996).CrossRefGoogle Scholar
[4] See, e.g., Min, B., Chan, C. and Ho, K., Phys. Rev. B 45, 1159 (1992), V. Fiorentini, M. Methfessel and M. Scheffier, Phys. Rev. B 47, 13353 (1993), E. Albanesi, W. Lambrecht and B. Segall, J. Vac. Sci. Technol. B 12, 2470 (1994), A. Rubio, J. Corkill and M. L. Cohen, Phys. Rev. B 49, 1952 (1994), C. Yeh, S. Wei and Z. Zunger, Phys. Rev. B 50, 2715 (1994), A. F. Wright and J. S. Nelson, Phys. Rev. B 51, 7866 (1995) and M. Palummo, L. Reining, R.W. Godby, C.M. Bertoni and N. Bornsen, Europhys. Lett. 26, 607 (1995). For a general reference, see W. Lambrecht and B. Segall, in Properties of Group III Nitrides, edited by J. Edgar, EMIS Data Series (lEE, London, 1994), chapt. 5.CrossRefGoogle Scholar
[5] Boguslawski, P., Briggs, E. M., and Bernholc, J., Phys. Rev. B 51, 17255 (1995).CrossRefGoogle Scholar
[6] Boguslawski, P., Briggs, E. M., and Bernholc, J., Appl. Phys. Lett., July (1996).Google Scholar
[7] Boguslawski, P. and Bernholc, J., to be published.Google Scholar
[8] Chen, B., Rapcewicz, K., Zhang, Z. and Bernholc, J., to be published (1996).Google Scholar
[9] Nardelli, M. Buongiorno, Rapcewicz, K. and Bernholc, J., to be published (1996).Google Scholar
[10] Rapcewicz, K., Chen, B., Yakobson, B. and Bernholc, J., to be published (1996).Google Scholar
[11] Benjamin, M. C., Wang, C., Davis, R. F. and Nemanich, R. J., Appl. Phys. Lett. 64, 3288 (1994).CrossRefGoogle Scholar
[12] Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).CrossRefGoogle Scholar
[13] Li, G. and Rabii, S., unpublished (1992).Google Scholar
[14] Gonze, X., Stumpf, R., and Scheffler, M., Phys. Rev. B 44, 8503 (1991).CrossRefGoogle Scholar
[15] Bachelet, G., Hamann, D. R. and Schliiter, M., Phys. Rev. B 26, 4199 (1982).CrossRefGoogle Scholar
[16] Hamann, D. R., Schliiter, M. and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).CrossRefGoogle Scholar
[17] Hamann, D. R., Phys. Rev. B 40, 2980 (1989).CrossRefGoogle Scholar
[18] Li, G., and Rabii, S., unpublished (1992).Google Scholar
[19] Froyen, S., Phys. Rev. B, 39, 3168 (1989).CrossRefGoogle Scholar
[20] Louie, S., Froyen, S. and Cohen, M.L., Phys. Rev. B 26, 1738 (1982).CrossRefGoogle Scholar
[21] Chadi, D. J. and Chang, K. J., Phys. Rev. Lett. 61, 873 (1988).CrossRefGoogle Scholar
[22] Fisher, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett. 67, 1298 (1995).CrossRefGoogle Scholar
[23] Bauer, R. and Margaritondo, G., Physics Today, 40, 27 (1987).CrossRefGoogle Scholar
[24] Lin, M.-E., Sverdlov, B. N., Strite, S., Morkoq, H. and Drakin, A.E., Electron. Lett. 29, 1759 (1993).CrossRefGoogle Scholar
[25] Wright, A. F. and Nelson, J. S., Phys. Rev. B50, ‘2159 (1994).CrossRefGoogle Scholar
[26] Lee, J., Aaronson, H. and Russel, K., Surf. Sci. 51 302 (1975) and E. Arbel and J. Cahn, Surf. Sci. 51, 305 (1975).CrossRefGoogle Scholar
[27] Chetty, N. and Martin, R.M., Phys. Rev. B 45, 6074 (1992), 45, 6089 (1992)CrossRefGoogle Scholar
[28] Zangwill, A., Physics at Surfaces, (Cambridge University Press, Cambridge, England, 1988).CrossRefGoogle Scholar
[29] Zhang, Z., Wensell, M., and Bernholc, J., Phys. Rev. B. 51, 5291 (1995).CrossRefGoogle Scholar
[30] See, for instance, MorkoQ, H. et al., J. Appl. Phys. 76, 1363 (1994), M. Paisley and R.F Davis, J. Cryst. Growth 127, 136 (1992).CrossRefGoogle Scholar
[31] Wei, S. and Zunger, A., Phys. Rev. Lett. 59, 144 (1987).CrossRefGoogle Scholar
[32] Martin, G. et al., Appl. Phys. Lett. 65, 610 (1994).CrossRefGoogle Scholar
[33] Fiorentini, V., Methfessel, M. and Scheffier, M., Phys. Rev. B 47, 13353 (1993).CrossRefGoogle Scholar
[34] Albanesi, E., Lambrecht, W. and Segall, B., J. Vac. Sci. Technol. B 12, 2470 (1994).CrossRefGoogle Scholar
[35] Peressi, M., Baroni, S., Baldereschi, A. and Resta, R., Phys. Rev. B 41, 12106 (1990).CrossRefGoogle Scholar
[36] Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Saunder College, Philadelphia 1976). Ch. 27.Google Scholar
[37] Smith, D., Solid State Commun. 57, 919 (1986).CrossRefGoogle Scholar
[38] Bykhovski, A., Gelmont, B. and Shur, M., Appl. Phys. Lett. 63, 2243 (1993); J. Appl. Phys. 74, 6734 (1993).CrossRefGoogle Scholar
[39] Satta, A., Fiorentini, V., Bosin, A., Meloni, F. and Vanderbilt, D., preprint (1996).Google Scholar
[40] Posternak, M., Baldereschi, A., Catellani, A. and Resta, R., Phys. Rev. Lett. 64, 1777 (1990).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Theory of Defects, Doping, Surfaces and Interfaces in Wide Gap Nitrides
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Theory of Defects, Doping, Surfaces and Interfaces in Wide Gap Nitrides
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Theory of Defects, Doping, Surfaces and Interfaces in Wide Gap Nitrides
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *