Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-rcd7l Total loading time: 0.141 Render date: 2021-10-19T00:35:31.646Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Tetraphenylmethane-Based 1,3,4-Oxadiazole as Electron Transporting Materials in Organic Light-Emitting Devices

Published online by Cambridge University Press:  21 March 2011

Chin-Ti Chen
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, cchen@chem.sinica.edu.tw
Tzu-Yao J. Lin
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Hsiu-Chih Yeh
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Li-Hsin Jan
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Easwaramoorthy Balasubramaniam
Affiliation:
Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
Get access

Abstract

A series of tetrahedral tetramers of 2,5-diphenyl substituted 1,3,4-oxadiazole compounds were synthesized and characterized for electron-transporting layer (ETL) in organic light-emitting diode (OLED). The multiple-branch design of the oxadiazole tetramers intends to increase the melting temperature and to generate glass phase of the low molar mass derivative such as 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD). We observed temperatures of the glass phase transition for the oxadiazole tetramer with appropriate peripheral substituents, indicative of amorphous characteristics of the molecule in spite of highly symmetrical molecular framework. The luminescence-current-voltage characteristics of multilayer OLED devices containing the oxadiazole tetramer or PBD as ETL were examined to evaluate the efficiency of our multiple-branch molecular design.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987)CrossRefGoogle Scholar
2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L. and Holmes, A. B., Nature, 347, 539 (1990).CrossRefGoogle Scholar
3. Clery, D., Science, 263, 1701 (1994).CrossRefGoogle Scholar
4. Strite, T. and Riess, W., Compound Semiconductor, 3 (Nov/Dec), 34 (1997).Google Scholar
5. Sheats, J. R., Antoniadis, H., Hueschen, M., Leonard, W., Miller, J., Moon, R., Roitman, D. and Stocking, A., Science, 273, 884 (1996).CrossRefGoogle Scholar
6. Organic Electroluminescent Materials and Devices, edited by. Miyata, S. and Nalwa, H. S., (Gordon and Breach: New York 1996).Google Scholar
7. Jüstel, T., Nikol, H. and Ronda, C., Angew. Chem., Int. Ed., 37, 3084 (1998).3.0.CO;2-W>CrossRefGoogle Scholar
8. Kraft, A., Grimsdale, A. C. and Holmes, A. B., Angew. Chem., Int. Ed., 37, 402 (1998).3.0.CO;2-9>CrossRefGoogle Scholar
9. Alivisatos, A. P., Barbara, P. F., Castleman, W. A., Chang, J., Dixon, D. A., M. L Klein,. McLendon, G. L., Miller, J. S., Ratner, M. A., Rossky, P. J., Stupp, S. I. and Thompson, M. E, Adv. Mater., 10, 1297 (1998).3.0.CO;2-7>CrossRefGoogle Scholar
10. Kuwayama, Y., Ogawa, H., Inada, H., Noma, N. and Shirota, Y., Adv. Mater., 6, 677 (1994).Google Scholar
11. Tanaka, H., Tolito, S., Taga, Y. and Okada, A., Chem. Commun., 2175 (1996).Google Scholar
12. Thelakkat, M. and Schmidt, H.-W., Adv. Mater., 10, 219 (1998).3.0.CO;2-6>CrossRefGoogle Scholar
13. Katsuma, K., and Shirota, Y., Adv. Mater., 10, 223 (1998).3.0.CO;2-Q>CrossRefGoogle Scholar
14. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett., 55, 1489 (1989).CrossRefGoogle Scholar
15. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett., 56, 799 (1990).CrossRefGoogle Scholar
16. Brown, A. R., Bradley, D. D. C., Burroughes, J. H., Friend, R. H., Greenham, N. C., Burn, P. L., Holmes, A. B. and Kraft, A., Appl. Phys. Lett., 61, 2793 (1992).CrossRefGoogle Scholar
17. Schmidt, A., Anderson, M. L. and Armstrong, N. R., J. Appl. Phys., 78, 5619 (1995).CrossRefGoogle Scholar
18. Salbeck, J., Yu, N., Bauer, J., Weissörtel, F. and Bestgen, H., Synth. Metals, 91, 209 (1997).CrossRefGoogle Scholar
19. Johansson, N., Santos, D. A. dos, Guo, S., Cornil, J., Fahlman, M., Salbeck, J., Schenk, H., Arwin, H., Brédas, J. L., and Salanek, W. R,. J. Chem. Phys., 107, 2542 (1997).CrossRefGoogle Scholar
20. Bettenhausen, J. and Strohriegl, P., Adv. Mater., 8, 507 (1996).CrossRefGoogle Scholar
21. Bettenhausen, J., Strohriegl, P., Bruttimg, W., Tokuhisa, H. and Tsutsui, T., J. Appl. Phys., 82, 4959 (1997).CrossRefGoogle Scholar
22. Tamoto, N., Adachi, C., and Nagai, K., Chem. Mater., 9, 1077 (1997).CrossRefGoogle Scholar
23. Detert, H., and Schollmeier, D., Synthesis, 999 (1999).Google Scholar
24. Hartingsveldt, W. Van, Verkade, P. E. and Wepster, B. M., Recl. Trav. Chim. Pay-Bas, 75, 349 (1956).CrossRefGoogle Scholar
25. Kieste, B., Grimm, M., and Kurreck, H., J. Am. Chem. Soc., 111, 108 (1989).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Tetraphenylmethane-Based 1,3,4-Oxadiazole as Electron Transporting Materials in Organic Light-Emitting Devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Tetraphenylmethane-Based 1,3,4-Oxadiazole as Electron Transporting Materials in Organic Light-Emitting Devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Tetraphenylmethane-Based 1,3,4-Oxadiazole as Electron Transporting Materials in Organic Light-Emitting Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *