Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-t82dr Total loading time: 0.157 Render date: 2021-12-03T13:27:29.781Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

TEM Study of Bulk AlN Growth by Physical Vapor Transport

Published online by Cambridge University Press:  03 September 2012

W.L. Sarney
Affiliation:
Dept. of Materials & Nuclear Engineering, University of Maryland, College Park, MD
L. Salamanca-Riba
Affiliation:
Dept. of Materials & Nuclear Engineering, University of Maryland, College Park, MD
T. Hossain
Affiliation:
Materials Science Research Center of Excellence, Howard University, Washington, D.C.
P. Zhou
Affiliation:
Materials Science Research Center of Excellence, Howard University, Washington, D.C.
H.N. Jayatirtha
Affiliation:
Materials Science Research Center of Excellence, Howard University, Washington, D.C.
H.H. Kang
Affiliation:
Dept. of Materials & Nuclear Engineering, University of Maryland, College Park, MD
R.D. Vispute
Affiliation:
Dept. of Materials & Nuclear Engineering, University of Maryland, College Park, MD
M. Spencer
Affiliation:
Materials Science Research Center of Excellence, Howard University, Washington, D.C.
K.A. Jones
Affiliation:
U.S. Army Research Laboratory, Adelphi, MD
Get access

Abstract

We are attempting to grow bulk AlN that would be suitable as a substrate for nitride film growth. Bulk AlN films were grown by physical vapor transport on 3.5° offaxis and on-axis 6H SiC seed crystals and characterized by TEM, x-ray-diffraction, Auger electron microscopy, and SEM. TEM images show that the bulk AlN does not have the columnar structure typically seen in AlN films grown by MOCVD. Although further optimization is required before the bulk AlN is suitable as a substrate, we find that the structural characteristics achieved thus far indicate that quality bulk AlN substrates may be obtained in the future.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sverdlov, B.N., Martin, G.A., and Morkoç, H., Appl. Phys. Lett. 67, 2063 (1995).CrossRefGoogle Scholar
[2] , Landolt and , Börnstein, Numerical Data and Fundamental Relationships in Science and Technology, vol. 17, Semiconductors, Springer, Berlin (1984).Google Scholar
[3] Popovici, G., Morkoç, H., Mohammad, S.N., Group III Nitride Semiconductor Compounds, ed. Gil, B., Clarendon Press, Oxford, (1998).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

TEM Study of Bulk AlN Growth by Physical Vapor Transport
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

TEM Study of Bulk AlN Growth by Physical Vapor Transport
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

TEM Study of Bulk AlN Growth by Physical Vapor Transport
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *