Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-tlg78 Total loading time: 0.246 Render date: 2021-05-15T19:04:26.279Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Tailoring of Transition Metal Alkoxides Via complexation For The Synthesis of Hybrid Organic-Inorganic Sols and Gels

Published online by Cambridge University Press:  25 February 2011

C. Sanchez
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
M. In
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
P. Toledano
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
P. Griesmar
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie -URA CNRS 1466 4 place Jussieu, 75252 PARIS, FRANCE.
Get access

Abstract

The chemical control of hydrolysis-condensation reactions of transition metal alkoxides can be performed through the modification of the transition metal coordination sphere by using strong complexing ligands (SCL). Complexing organic groups can be bonded to the transition metal oxide network in two different ways, as network modifiers or network formers. Different illustrations of the role of complexing ligands on Ti(IV) and Zr(IV) alkoxides are presented. As a network modifier, SCL act as termination agents for condensation reactions allowing a control of particle growth. The complexing ligands being located at the periphery of the oxo core open many opportunities for colloid surface protection. SCL carrying organofunctional groups which exhibit non linear optical (NLO) properties have also been used as probes to study sol-gel transformations. SCL functionalized with organic polymerizable functions act as network formers. Hybrid organic-inorganic copolymers intimately interpenetrated on a nanometer size scale were synthesized from zirconium oxo polymers chemically bonded to polymeric methacrylate chains via a complexing function.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below.

References

1- Brinker, C. J. and Scherrer, G., Sol-Gel Science, the Physics and Chemistry of Sol-gel Processing (Academic press, San-Diego, 1989).Google Scholar
2- Livage, J., Henry, M. and Sanchez, C., Progress in Solid State Chemistry 18, 259 (1988)CrossRefGoogle Scholar
3-Sol-gel technology for thin films, fibers, preforms, electronics and especialty shapes” Edited by. Klein, L.C., (Noyes Pub,. 1988).Google Scholar
4- Schmidt, H., Scholze, H. and Kaiser, A., J. Non-cryst. Solids 63, 1 (1984).CrossRefGoogle Scholar
5- Schmidt, H. and Seiferling, B., Mat. Res. Soc. Symp. Proc. 73 739 (1986).CrossRefGoogle Scholar
6- Wang, B., Wilkes, G. L., Smith, C. D. and McGrath, J. E., Polymer Communication Vol.32 13, 400 (1991).Google Scholar
7- Toussaere, E., Zyss, J., Griesmar, P. and Sanchez, C., NLO 3 (1991)Google Scholar
8- Dire, S., Babonneau, F., Sanchez, C. and Livage, J., Journal of Material Chemistry, 2,(2) 239 (1992).CrossRefGoogle Scholar
9- Charbouillot, Y., Ravaine, D., Armand, M. and Poinsignon, C., J. Non-cryst. Solids, 103, 325 (1988).CrossRefGoogle Scholar
10- Sanchez, C., Livage, J., Henry, M. and Babonneau, F., J. Non-cryst. Solids 100, 650 (1988).CrossRefGoogle Scholar
11- Bradley, D. C., Mehrotra, R. C. and Gaur, D. P., Metal Alkoxides (Academic Press, London, 1978).Google Scholar
12- Mehrotra, R. C., Bohra, R. and Gaur, D. P., Metal β-diketonates and Allied Derivatives (Academic Press, London, 1978).Google Scholar
13- Ribot, F., Toledano, P. and Sanchez, C., Chem. Mater. 3, 759 (1991).CrossRefGoogle Scholar
14- Livage, J. and Sanchez, C., J. Non-cryst. Solids (1992) (in press)Google Scholar
15- Smith, G. D., Caughlan, C. N. and Campbell, J. A., Inorg. Chem. 11(12) 2989 (1972).CrossRefGoogle Scholar
16- Toledano, P., In, M. and Sanchez, G, C. R. Acad. Sci. Paris Serie II 313, 1247 (1991)Google Scholar
17- Toledano, P., In, M. and Sanchez, C., C. R. Acad. Sci. Paris Serie II 311 1161 (1990).Google Scholar
18- Sanchez, C., Ribot, F., Doeuff, S., in Inorganic and Organometallique Polymers with Special Properties. edited by Laine, R. M. (Nato, ASI series, Kluwer Academic Pub, vol 206, 1992) p 267.CrossRefGoogle Scholar
19- Pope, M. T., in Heteropolv and Isopoly Oxometalates, Inorg. chem. concepts 8, (Springer Verlag, Berlin 1983).CrossRefGoogle Scholar
20- Papet, P., LeBars, N., Baumard, J. F., Lecomte, A. and Dauger, A., J. Mater. Sci. 24, 3850 (1989).CrossRefGoogle Scholar
21- Sanchez, C. and In, M., J. Non-cryst. Solids (1992), in press.Google Scholar
22- Debsikar, J. C., J. Non-Cryst. Solids 87, 343 (1986).CrossRefGoogle Scholar
23- Kundu, D. and Ganguli, D., J. Mater. Sci. Lett. 5, 293 (1986).CrossRefGoogle Scholar
24- Lacourse, W. C. and Kim, S., in : Science of Ceramic Processing, eds Hench, L. L. and Ulrich, D. R. (Wiley, New-York, 1986) p.304.Google Scholar
25- Unuma, H., Tokoda, T., Siisuki, T. Y., Furusaki, T., Kodaira, K. and Hatsushida, T. J. Mater. Sci. Lett., 5, 1248 (1986).CrossRefGoogle Scholar
26- Herron, N., Wang, Y. and Eckert, H., J. Am. Chem. Soc., 112, 1322 (1990)CrossRefGoogle Scholar
27- Duonghong, D., Borgarello, E. and Grätzel, M., J. Am. Chem. Soc., 103, 4685 (1981).CrossRefGoogle Scholar
28- Leaustic, A., Babonneau, F. and Livage, J., Chem. Mater, 1, 240 and 248 (1989).CrossRefGoogle Scholar
29- Avnir, D., Braun, S., and Ottolenghi, M., in Supramolecular Architecture in 2 and 3 dimensions. edited by Bein, T., ACS Symp. Ser.(1992)Google Scholar
30- Winter, R., Hua, D. W., Song, X., Mantulin, W., and Jonas, J., J. Phys. Chem, 94, No 6, 2706 (1990)CrossRefGoogle Scholar
31- Audebert, P., Griesmar, P. and Sanchez, C., J Mater. Chem., 1, 4, 699 (1991).CrossRefGoogle Scholar
32- Dunn, B. and Zink, J. I., J. Japan Ceram, Soc., (1992), in press.Google Scholar
33- Boulton, J. M., Thompson, J., Fox, H. H., Gorodisher, I., Teowee, G., Calvert, P. D., and Uhlmann, D.R., Mat. Res. Soc. Symp. 180, 987.(1990)CrossRefGoogle Scholar
34- Griesmar, P., Sanchez, C., Pucetti, G., Ledoux, I. and Zyss, J., Molecular Engineering, 1, 3, 205 (1991).CrossRefGoogle Scholar
35- McKierman, J. M., Pouxviel, J. C., Dunn, B., and Zink, J. I. J. Phys. Chem., 93, 2129 (1989).CrossRefGoogle Scholar
36- Cabane, B., Dubois, M. and Duplessix, R., J. Physique, 48, 2131 (1987).CrossRefGoogle Scholar
37- Suvorov, L. and Spasskii, S. S., Proc. Acad. Sci. USSR 127, 615 (1959).Google Scholar
38- Valente, I., Sanchez, C., Henry, M. and Livage, J., Industrie Céramique 836, 193, (1989).Google Scholar
39- Naβ, R. and Schmidt, H., in : Sol-Gel Optics, Edited by Mackenzie, J. D. and Ulrich, D. R. (Proc. SPIE 1328. Washington, 1990) p.258.Google Scholar
40- Doeuff, S., Henry, M., Sanchez, C. and Livage, J., J. Non-cryst. Solids 89, 206 (1989).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Tailoring of Transition Metal Alkoxides Via complexation For The Synthesis of Hybrid Organic-Inorganic Sols and Gels
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Tailoring of Transition Metal Alkoxides Via complexation For The Synthesis of Hybrid Organic-Inorganic Sols and Gels
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Tailoring of Transition Metal Alkoxides Via complexation For The Synthesis of Hybrid Organic-Inorganic Sols and Gels
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *