Hostname: page-component-788cddb947-w95db Total loading time: 0 Render date: 2024-10-16T06:37:33.611Z Has data issue: false hasContentIssue false

Tailored Mesoporous Silicas: From Confinement Effects to Catalysis

Published online by Cambridge University Press:  31 January 2011

A. C. Buchanan, III
Affiliation:
buchananac@ornl.gov, Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee, United States
Michelle K. Kidder
Affiliation:
kidderm@ornl.gov, Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee, United States
Get access

Abstract

Ordered mesoporous silicas continue to find widespread use as supports for diverse applications such as catalysis, separations, and sensors. They provide a versatile platform for these studies because of their high surface area and the ability to control pore size, topology, and surface properties over wide ranges. Furthermore, there is a diverse array of synthetic methodologies for tailoring the pore surface with organic, organometallic, and inorganic functional groups. In this paper, we will discuss two examples of tailored mesoporous silicas and the resultant impact on chemical reactivity. First, we explore the impact of pore confinement on the thermochemical reactivity of phenethyl phenyl ether (PhCH2CH2OPh, PPE), which is a model of the dominant β-aryl ether linkage present in lignin derived from woody biomass. The influence of PPE surface immobilization, grafting density, silica pore diameter, and presence of a second surface-grafted inert “spacer” molecule on the product selectivity has been examined. We will show that the product selectivity can be substantially altered compared with the inherent gas-phase selectivity. Second, we have recently initiated an investigation of mesoporous silica supported, heterobimetallic oxide materials for photocatalytic conversion of carbon dioxide. Through surface organometallic chemistry, isolated M-O-M’ species can be generated on mesoporous silicas that, upon irradiation, form metal to metal charge transfer bands capable of converting CO2 into CO. Initial results from studies of Ti(IV)-O-Sn(II) on SBA-15 will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Huck, W. T. S., Chem. Commun., 4143 (2005).Google Scholar
2 Defreese, J. L., Hwang, S.-J., Parra-Vasquez, A. N. G., Katz, A., J. Am. Chem. Soc., 128, 5687 (2006).Google Scholar
3 Pagliaro, M., Ciriminna, R., Palmisano, G., Chem. Soc. Rev., 36, 932 (2007).Google Scholar
4 Zhang, R., Ding, W., Tu, B., Zhao, D., Chem. Mater., 19, 4379 (2007).Google Scholar
5 Sierocki, P., Maas, H., Dragut, P., Richardt, G., Vogtle, F., Cola, L. De, Brouwer, F. A. M., Zink, J. I., J. Phys. Chem. B, 110, 24390 (2006).Google Scholar
6 Houghten, R. A., Yu, Y., J. Am. Chem. Soc., 127, 8582 (2005).Google Scholar
7 Balas, F., Manzano, M., Horcajada, P., Vallet-Regi, M., J. Am. Chem. Soc., 128, 8116 (2006).Google Scholar
8 Slowing, I., Trewyn, B. G., Lin, V. S.-Y., J. Am. Chem. Soc., 128, 14792 (2006).Google Scholar
9 Li, C., Zhang, H., Jiang, D.. Yang, Q., Chem. Commun., 547 (2007).Google Scholar
10 Kidder, M. K., Britt, P. F., Zhang, Z., Dai, S., Hagaman, E. W., Chaffee, A. L., Buchanan, A. C. III, J. Am. Chem. Soc., 127, 6353 (2005).Google Scholar
11 Kidder, M. K., Britt, P. F., Zhang, Z., Dai, S., and Buchanan, A. C. III, Chem. Commun., 2804 (2003).Google Scholar
12 Kidder, M. K., Britt, P. F., and Buchanan, A. C. III, Energy Fuels, 20, 54 (2006).Google Scholar
13 Kidder, M. K., Britt, P. F., Chaffee, A. L., and Buchanan, A. C. III, Chem. Commun, 52 (2007).Google Scholar
14 Kidder, M. K. and Buchanan, A. C. III, J. Phys. Chem. C, 112, 3027 (2008).Google Scholar
15 Dabestani, R., Kidder, M. K., Buchanan, A. C. III, J. Phys. Chem. C, 112, 11468 (2008).Google Scholar
16 Kintzel, E. J. Jr., Herwig, K. W., Kidder, M. K., Britt, P. F., Buchanan, A. C. III, and Chaffee, A. L., in Quasi-Elastic Neutron Scattering Conference 2006, Sokol, P. E., Kaiser, H., Baxter, R., Pynn, R., Bossev, D., Leuschner, M., Eds.; Materials Research Society: Warrendale, PA, 2007, pp.3136.Google Scholar
17 Stein, A., Melde, B. J., Schroden, R. C., Adv. Mater., 19, 1403 (2000).Google Scholar
18 Widenmeyer, M., Anwander, R., Chem. Mater., 14, 1827 (2002).Google Scholar
19 Calleja, G., Grieken, R. van, Garcia, R., Melero, J. A., Iglesias, J., J. Mol. Catal. A, 215, 182 (2002).Google Scholar
20 Lin, W., Frei, H., J. Phys. Chem. B, 109, 4929 (2005).Google Scholar
21 Britt, P. F., Buchanan, A. C. III, Malcolm, E. A., J. Org. Chem., 60, 6523 (1995).Google Scholar
22 Inoue, T., Fujishima, A., Konishi, S., Honda, K., Nature, 277, 637 (1979).Google Scholar
23 Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., Yanagida, S., Okada, T., Kobayashi, H., J. Phys. Chem. B, 101, 8270 (1997).Google Scholar
24 Fujiwara, H., Hosokawa, H., Murakoshi, K., Wada, Y., Yanagida, S., Langmuir, 14, 5154 (1998).Google Scholar
25 Anpo, M., Dohshi, S., Kitano, M., Hu, Y., Takeuchi, M., Matsuoka, M., Annu. Rev. Mater. Res., 35, 1 (2005).Google Scholar
26 Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S. G., Ichihashi, Y., Park, D. R., Suzuki, Y., Koyano, K., Tatsumi, T., Catal. Today, 44, 327 (1998).Google Scholar
27 Lin, W., Frei, H., J. Am. Chem. Soc., 127, 1610 (2005).Google Scholar