Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-s8fcc Total loading time: 0.18 Render date: 2022-12-04T13:14:46.039Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Systematic Modification of Indium Tin Oxide to Enhance Diode Device Behavior

Published online by Cambridge University Press:  01 February 2011

Jing Guo
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544-1009
Norbert Koch
Affiliation:
Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
Jeffrey Schwartz
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544-1009
Steven L. Bernasek
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544-1009
Get access

Abstract

Monolayers of tin complexes of phenoxide ligands spanning a range of dipole moments were prepared on the surface of ITO via simple metathesis reactions. They were characterized by quartz crystal microgravimetry (QCM) and a Kelvin probe. A nearly linear relationship was found between the measured ITO work functions and dipoles of the surface complexes. Measurements of current densities of diode devices built on surface modified ITO anodes were made, and a correlation was found between the total surface dipole per unit area and these current densities. Simple OLED devices were also constructed using these modified anodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Nüesch, F.; Forsythe, E. W.; Le, Q. T.; Gao, Y.; Rothberg, L. J. J. Appl. Phys. 2000, 87, 7973 CrossRefGoogle Scholar
(2) Sugiyama, K.; Ishii, H.; Ouchi, Y.; Seki, K. J. Appl. Phys. 2000, 87, 295 CrossRefGoogle Scholar
(3) Steuber, F.; Staudigel, J.; Stössel, M.; Simmerer, J.; Winnacker, A. Appl. Phys. Lett. 1999, 74, 3558 CrossRefGoogle Scholar
(4) Choi, M. W.; Cho, K.; Sung, C.; Yang, J.; Noh, Y. Y. M.; Choi, J. C.; Jeong, K. J. Vac. Sci. Technol. B 2004, 22, 758 CrossRefGoogle Scholar
(5) Tang, J. X.; Li, Y. Q.; Zheng, L. R.; Hung, L. S. J. Appl. Phys. 2004, 95, 4397 CrossRefGoogle Scholar
(6) Ke, L.; Kumar, R. S.; Zhang, K.; Chua, S. J.; Wee, A. T. S. Synth. Met. 2004, 140, 295 CrossRefGoogle Scholar
(7) Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mater. 1999, 11, 605 3.0.CO;2-Q>CrossRefGoogle Scholar
(8) Ito, E.; Oji, H.; Furuta, M.; Ishii, H.; Oichi, K.; Ouchi, Y.; Seki, K. Synth. Met. 1999, 101, 654 CrossRefGoogle Scholar
(9) Milliron, D. J.; Hill, I. G.; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys. 2000, 87, 572 CrossRefGoogle Scholar
(10) Span, A. R.; Bruner, E. L.; Bernasek, S. L.; Schwartz, J. Langmuir 2001, 17, 948 CrossRefGoogle Scholar
(11) Bruner, E. L.; Koch, N.; Span, A. R.; Bernasek, S. L.; Kahn, A.; Schwartz, J. J. Am. Chem. Soc. 2002, 124, 3192 CrossRefGoogle Scholar
(12) Guo, J.; Koch, N.; Schwartz, J.; Bernasek, S. L. J. Phys. Chem. B 2005, 109, 3966 CrossRefGoogle Scholar
(13) Carey, F. A. Organic Chemistry; 4th ed.; McGraw Hill Higher Education: Boston, 2000.Google Scholar
(14) Sauerbrey, G. Z. Phys. 1959, 155, 206 CrossRefGoogle Scholar
(15) Christmann, K. Introduction to Surface Physical Chemistry; Springer-Verlag: New York, 1991 CrossRefGoogle Scholar
(16) Khodabakhsh, S.; Poplavskyy, D.; Heutz, S.; Nelson, J.; Bradley, D. D. C.; Murata, H.; Jones, T. S. Adv. Funct. Mater. 2004, 14, 1205 Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Systematic Modification of Indium Tin Oxide to Enhance Diode Device Behavior
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Systematic Modification of Indium Tin Oxide to Enhance Diode Device Behavior
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Systematic Modification of Indium Tin Oxide to Enhance Diode Device Behavior
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *