Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-nd7s2 Total loading time: 0.27 Render date: 2021-05-11T21:26:12.103Z Has data issue: true Feature Flags: {}

Synthesis of Silicon Based Opal by Chemical Reduction of Silica Opal

Published online by Cambridge University Press:  26 February 2011

Ali E. Aliev
Affiliation:
Ali.Aliev@utdallas.edu, University of Texas at Dallas, NanoTech Institute, 7825 Maccalu blvd., 1506, Dallas, TX, 75252, United States, 9728836543, 9728836529
M. A. O. Royer
Affiliation:
marva_lus@hotmail.com, University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
A. A. Zakhidov
Affiliation:
zakhidov@utdallas.edu, University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
R. H. Baughman
Affiliation:
ray.baughman@utdallas.edu, University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
Get access

Abstract

By reduction of SiO2 opal in atmosphere of nitrogen (80%)-helium (15%)-hydrogen (5%) gas mixture at various temperatures we tuned the dielectric contrast ratio and band gap of photonic crystal (PC) up to 10 %. The SEM images dose not show any detectible change in lattice parameters, whereas the elemental analysis shows remarkable decrease of oxygen content. The shift of reflectance spectra toward the long wavelength and increase of transmission in infrared region confirm the redaction of silica and partial transformation to the silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Yablonovitch, E., Phys. Rev. Lett. 58 (1987) 2059.CrossRefGoogle Scholar
2. John, S., Phys Rev Lett. 58 (1987) 2486.CrossRefGoogle Scholar
3. Gralak, B., Enoch, S. and Tayeb, G.. Anomalous refractive properties of photonic crystals, J. Opt. Soc. Of Am. A 17 (2000) 1012.CrossRefGoogle ScholarPubMed
4. Notomi, M.. Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62 (2000) 10696.CrossRefGoogle Scholar
5. Luo, C. Y., Johnson, S. G. and Joannopoulos., J.D. All-angle negative refraction in a three-Dimensionally periodic photonic crystal, Appl. Phys. Lett. 81 (2002) 23522354.CrossRefGoogle Scholar
6. Luo, C., Johnson, S. G., et al. “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104, (2002).CrossRefGoogle Scholar
7. Cubukcu, E., Aydin, K., et al. Subwavelength resolution in a two-dimensional photoniccrystal-based superlens, Phys. Rev. Lett. 91 (2003) 207401.Google Scholar
8. Cubukcu, E., Aydin, K., et al. Negative refraction by photonic crystals, Nature 423 (2003) 604605.CrossRefGoogle ScholarPubMed
9. Foteinopoulou, S. and Soukoulis, C. M.. “Negative refraction and left-handed behavior in twodimensional photonic crystals,” Phys. Rev. B 67 (2003) 235107.CrossRefGoogle Scholar
10. Moussa, R., Foteinopoulou, S. and Soukoulis., C. M.Delay-time investigation of electromagnetic waves through homogeneous medium and photonic crystal left-handed materials,” Appl. Phys. Lett. 85 (2004) 11251127.CrossRefGoogle Scholar
11. Parimi, P. V., Lu, W.T., et al. “Negative refraction and left-handed electromagnetism in microwave photonic crystals,” Phys. Rev. Lett. 92 (2004) 127401.CrossRefGoogle ScholarPubMed
12. Li, Z. Y. and Lin, L. L.. “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction, Phys. Rev. B 68 (2003) 245110.CrossRefGoogle Scholar
13. Berrier, A., Mulot, M., et al. “Negative refraction at infrared wavelengths in a twodimensional photonic crystal,” Phys. Rev. Lett. 93 (2004) 73902.CrossRefGoogle Scholar
14. Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas, R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R., Bur, J., Nature 394 (1998) 251.CrossRefGoogle Scholar
15. Yamamoto, N., Noda, S., Chutinan, A., Jpn. J. Appl. Phys 37 (1998) L1052.CrossRefGoogle Scholar
16. Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C., Khayrullin, I. I., Dantas, S. O., Marti, J., Ralchenko, V. G., Science 282,(1998) 897.CrossRefGoogle Scholar
17. Aliev, A. E., Zakhidov, A. A., Baughman, R. H., Yablonovitch, E., Chalcogenide Inverted Opal Photonic Crystal as Infrared Pigments,International J. of Nanoscience, 5 (2006) 157.CrossRefGoogle Scholar
18. Miguez, H., Tetreault, N., Yang, S. M., Kitaev, V., Ozin, G. A., Adv. Mater. 15 (2003) 78.CrossRefGoogle Scholar
19. Blanco, A., Chomski, E., Grabtchak, S, Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J. P., Ozin, G. A., O. van Driel. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional band-gap near 1.5 μm, Nature, 405 (2000) 437.CrossRefGoogle Scholar
20. M?guez, H., Meseguer, F., Lopez, C., Holgado, M., Andreasen, G., Mifsud, A., V. Forne. Germanium FCC Structure from a Colloidal Crystal Template. Langmuir, 16 (2000) 44054408.CrossRefGoogle Scholar
21. Pallavidino, L., Razo, D. Santamaria, Geobaldo, F., Balestreri, A., Bajoni, D., Galli, M., Andreani, L. C., Ricciardi, C., Celasco, E., Quaglio, M., F. Giorgis. Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids 352 (2006) 14251429.Google Scholar
22. Aliev, A. E., Akhmedzhanova, N. Kh., Krivorotov, V. F., Kholmanov, I. N., and A. A. Fridman. Thermal Conductivity of Opal Filled with a LiIO3 Ionic Conductor. Physics of the Solid State, 45, 1 (2003) 6168.Google Scholar
23. Kravets, V. G., Meier, C., Konjhodzic, D., Lorke, A., Wiggers, H., Infrared properties of silicon nanoparticles, J. of Appl. Phys., 97 (2005) 084306.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis of Silicon Based Opal by Chemical Reduction of Silica Opal
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Synthesis of Silicon Based Opal by Chemical Reduction of Silica Opal
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Synthesis of Silicon Based Opal by Chemical Reduction of Silica Opal
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *