Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-727vs Total loading time: 0.173 Render date: 2022-12-04T21:57:47.288Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Synthesis of a New Class of Molecule Li+@C60O(OH)7 as a “Cation-Encapsulated Anion Nanoparticle” by Multihydroxylation of Li-Encapsulated Fullerene

Published online by Cambridge University Press:  27 February 2013

Hiroshi Ueno
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Yuji Nakamura
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Naohiko Ikuma
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Ken Kokubo*
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Takumi Oshima
Affiliation:
Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Get access

Abstract

Treatment of [Li+@C60](PF6) with 30% fuming sulfuric acid and subsequent hydrolysis gave hydroxylated derivative Li+@C60O(OH)7. Its structure was deduced by IR, NMR, MALDI-TOF/FAB MS, and elemental analysis. Notably, the reaction of [Li+@C60](PF6) was site-selective, giving a single major isomer (ca. 70%) with two minor isomers, in marked contrast to the case of empty C60. Furthermore, the results clearly indicate that the internal Li cation was strongly shielded by the surface dipolar hydroxyl groups, and thus it appears that the properties of endohedral fullerenes can be controlled by the external modification of the fullerene cage. Whereas Li+@C60 is relatively insoluble, Li+@C60O(OH)7 was found to be highly soluble in polar solvents such as DMSO and DMF. The increased solubility is especially desirable for biological/medicinal assays and applications in such research fields.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aoyagi, S., Nishibori, E., Sawa, H., Sugimoto, K., Takata, M., Miyata, Y., Kitaura, R., Shinohara, H., Okada, H., Sakai, T., Ono, Y., Kawachi, K., Yokoo, K., Ono, S., Omote, K., Kasama, Y., Ishikawa, S., Komuro, T., Tobita, H., Nature Chem. 2, 678683 (2010).CrossRef
Fukuzumi, S., Ohkubo, K., Kawashima, Y., Kim, D. S., Park, J. S., Jana, A., Lynch, V. M., Kim, D., Sessler, J. L., J. Am. Chem. Soc. 133, 1593815941 (2011).CrossRef
Matsuo, Y., Okada, H., Maruyama, M., Sato, H., Tobita, H., Ono, Y., Omote, K., Kawachi, K., Kasama, Y., Org. Lett. 14, 37843787 (2012).CrossRef
Aoshima, H., Kokubo, K., Shirakawa, S., Ito, M., Yamana, S., Oshima, T., Biocontrol Sci. 14, 6972 (2009).CrossRef
Saitoh, Y., Mizuno, H., Xiao, L., Hyoudou, S., Kokubo, K., Miwa, N., Mol. Cell. Biochem. 366, 191200 (2012).CrossRef
Chen, Z., Ma, L., Liu, Y., Chen, C., Theranostics 2, 238250 (2012).CrossRefPubMed
Ueno, H., Nakamura, Y., Ikuma, N., Kokubo, K., Oshima, T., Nano Res. 6, 558564 (2012).CrossRef
Chiang, L. Y., Wang, L. –Y., Swirczewski, J. W., Soled, S., Cameron, S., J. Org. Chem. 59, 39603968 (1994).CrossRef
Wada, Y., Totoki, S., Watanabe, M., Moriya, N., Tsunazawa, Y., Shimaoka, H., Opt. Express 14, 57555776 (2006).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis of a New Class of Molecule Li+@C60O(OH)7 as a “Cation-Encapsulated Anion Nanoparticle” by Multihydroxylation of Li-Encapsulated Fullerene
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis of a New Class of Molecule Li+@C60O(OH)7 as a “Cation-Encapsulated Anion Nanoparticle” by Multihydroxylation of Li-Encapsulated Fullerene
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis of a New Class of Molecule Li+@C60O(OH)7 as a “Cation-Encapsulated Anion Nanoparticle” by Multihydroxylation of Li-Encapsulated Fullerene
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *