Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-22T11:40:41.075Z Has data issue: false hasContentIssue false

Synthesis and Properties of In-Situ MoSi2/SiC Composites

Published online by Cambridge University Press:  25 February 2011

S. Jayashankar
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S.E. Riddle
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
M. J. Kaufman
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Compositionally-tailored, silica-free, MoSi2/SiC composites with SiC content ranging from 0 to 40 percent were synthesized through a novel processing scheme involving mechanical alloying and in-situ reactions for the formation of the reinforcement. Room temperature indentation fracture toughness and hardness measurements were obtained from these silica-free composites and were compared with values obtained from silica-containing, conventionally-processed MoSi2/SiC composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maxwell, W.A., NACA RM E52B06, 1952.Google Scholar
2. Jayashankar, S. and Kaufman, M. J., Scripta Metallurgica et Materialia, 26, 1245, (1992).Google Scholar
3. Maloy, S.A., Heuer, A.H., Lewandowski, J.J. and Petrovic, J.J., J. Am. Ceram. Soc. 74 2704 (1991).Google Scholar
4. Jayashankar, S. and Kaufman, M. J., Journal of Materials Research, 8, 1428, (1993).Google Scholar
5. Mason, D.P. and Aken, D.C. Van, Mat. Res. Soc. Symp.Proc. 273, 289, (1992).Google Scholar
6. Hardwick, D.A., Martin, P.L. and Moores, R. J., Scripta Metall. 27, 391, (1992).Google Scholar
7. Schwarz, R. B., Srinivasan, S.R., Petrovic, J. J. and Maggiore, C. J., Mater. Sci. Eng. A155, 75, (1992).Google Scholar
8. Silva, A. Costae and Kaufman, M. J., to appear in Met. Trans. 25A (1994).Google Scholar
9. Nowotny, H., Parthe, E., Kieffer, R. and Benesovsky, F., Monatsh. Chemie 85, 255, (1954).Google Scholar
10. Riddle, S. E., Jayashankar, S. and Kaufman, M.J., Mat. Res. Soc. Symp. Proc. (this proceedings).Google Scholar
11. Chart, T. G., Metal Science 8, 344, (1974).Google Scholar
12. Searcy, A.W. and Tharp, A. G., J. Phys. Chem. 64, 1539, (1960).Google Scholar
13. Wade, R. K. and Petrovic, J. J., J. Am. Ceram. Soc. 75, 3160, (1992)Google Scholar
14. Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D. B., J. Am. Ceram. Soc. 64, 533, (1981).Google Scholar
15. Nakamura, M., Matsumoto, S., and Hirano, T., J. Mat. Sci 25, 3309, (1990).Google Scholar
16. “Engineering Property Data on Selected Ceramics, Vol. 2, Carbides”, Metals and Ceramics Information Center Report No. MCIC-HB-07 vol II, Batelle Columbus Laboratories, Columbus, Ohio, (1979).Google Scholar
17. Ohya, Y., Hoffman, M.J., and Petzow, G., J. Am. Ceram. Soc. 75, 2479, (1992).Google Scholar
18. Bhattacharya, A. K. and Petrovic, J.J., J. Am. Ceram. Soc. 74, 2700, (1991).Google Scholar
19. Rice, R., Ceram. Eng. Sci. Proc. 8, 605, (1987).Google Scholar