Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-5zjcf Total loading time: 0.238 Render date: 2022-08-18T17:27:02.111Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A Surface Insulator-to-Conductor Phase Transition in Colossal Magnetoresistive Manganese Perovskites Thin Films

Published online by Cambridge University Press:  21 March 2011

C.N. Borca
Affiliation:
Department of Physics and Astronomy and the Center for Material Research and Analysis, University of Nebraska, Lincoln, NE 68588-0111, U.S.A.
Bo Xu
Affiliation:
Department of Physics and Astronomy and the Center for Material Research and Analysis, University of Nebraska, Lincoln, NE 68588-0111, U.S.A.
Takashi Komesu
Affiliation:
Department of Physics and Astronomy and the Center for Material Research and Analysis, University of Nebraska, Lincoln, NE 68588-0111, U.S.A.
Hae-Kyung Jeong
Affiliation:
Department of Physics and Astronomy and the Center for Material Research and Analysis, University of Nebraska, Lincoln, NE 68588-0111, U.S.A.
S.-H. Liou
Affiliation:
Department of Physics and Astronomy and the Center for Material Research and Analysis, University of Nebraska, Lincoln, NE 68588-0111, U.S.A.
P.A. Dowben
Affiliation:
Department of Physics and Astronomy and the Center for Material Research and Analysis, University of Nebraska, Lincoln, NE 68588-0111, U.S.A.
Get access

Abstract

We have observed a distinct surface phase transition for an important class of colossal magnetoresistive materials, La0.65D0.35MnO3 (with D = Sr, Pb) occurring in a surface layer compositionally different from the bulk. The surface phase transition occurs around 240 K compared to350 K for the bulk and is fundamentally different. In the bulk, a ferromagnetic metal to paramagnetic ‘bad metal’ occurs, while the lower-temperature surface transition is from an n-type (in case of La0.65D0.35MnO3) or a p-type (in case of La0.65D0.35MnO3) semiconductor to a semimetal with increasing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, J.et al., Phys. Rev. Lett. 80, 1328 (1998)CrossRefGoogle Scholar
2. Gubank, B., Donath, M. and Passek, F., Phys. Rev. B 54, R11153 (1994); D. Li, M. Freitag, J. Pearson, Z.-Q. Qui and S.D. Bader, Phys. Rev. Lett. 72, 3112 (1994); J. Thomasson, F. May, B. Feldman, M. Wuttig and H. Ibach, Phys. Rev. Lett. 69, 3831 (1992)CrossRefGoogle Scholar
3. Gavioli, Luca, Betti, Maria Grazia and Mariani, Carlo, Phys. Rev. Lett. 77, 3869 (1990); S.D. Kevan and N.G. Stoffel, Phys. Rev. Lett. 53, 702 (1984)CrossRefGoogle Scholar
4. Xu, Q.L., Liu, M.T., Liu, Y., Borca, C.N., Dulli, H., Dowben, P.A., Liou, S.-H., Mat. Res. Soc. Symp. Proc. 602 (2000),in pressCrossRefGoogle Scholar
5. Dulli, H., Plummer, E.W., Choi, Jaewu, Liou, S.-H., Dowben, P.A., Appl. Phys. Lett. 77, 570 (2000)CrossRefGoogle Scholar
6. Borca, C.N., Xu, Bo, Komesu, Takashi, Jeong, Hae-Kyung, Liu, M.T., Liou, S.-H., Dowben, P.A., submitted to,Appl. Phys. Lett. Google Scholar
7. Borca, C.N., Adenwalla, S., Liou, S.-H., Xu, Q.L., Robertson, J.L., Dowben, P.A., submitted to J. Magn. Magn. Mat.; Hibble, S.J.et al., J. Phys. Cond. Matter 11, 9221 (1999)Google Scholar
8. Kuwata, Y., Suga, S., Imada, S., Sekiyama, A., Ueda, S., Iwasaki, T., Harada, H., Muro, T., Fukawa, T., Ashida, K., Yoshioka, H., Terauchi, T., Sameshima, J., Kuwahara, H., Morimoto, Y., Tokura, Y., J. El. Spectros. Rel. Phenom. 88–91, 281 (1998)CrossRefGoogle Scholar
9. Suga, S.et al., J. Electron Spectros. Rel. Phenom. 78, 283 (1996)CrossRefGoogle Scholar
10. Choi, Jaewu, Dulli, H., Liou, S.-H., Dowben, P.A., Langell, M.A., Phys. Stat. Sol. (b) 214, 45 (1999)3.0.CO;2-#>CrossRefGoogle Scholar
11. Taguchi, H., Shimada, M., J. Solid State Chem. 67, 37 (1987)CrossRefGoogle Scholar
12. Borca, C.N., Xu, Bo, Komesu, Takashi, Jeong, Hae-Kyung, Liu, M.T., Liou, S.-H., Stadler, S., Idzerda, Y., Dowben, P.A., submitted to Phys. Rev. Lett. Google Scholar
13. Sun, J.Z., Abraham, D.W., Rao, R.A. and Eom, C.B., Appl. Phys. Lett. 74, 3017 (1999)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Surface Insulator-to-Conductor Phase Transition in Colossal Magnetoresistive Manganese Perovskites Thin Films
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Surface Insulator-to-Conductor Phase Transition in Colossal Magnetoresistive Manganese Perovskites Thin Films
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Surface Insulator-to-Conductor Phase Transition in Colossal Magnetoresistive Manganese Perovskites Thin Films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *