Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lfkwv Total loading time: 0.161 Render date: 2021-05-09T23:53:42.956Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Surface Immobilization of Synthetic Proteins Via Plasma Polymer Interlayers

Published online by Cambridge University Press:  10 February 2011

Hans J Griesser
Affiliation:
CSIRO Molecular Science, Clayton Laboratory, Private Bag 10. Clayton South, Victoria 3169, Australia. Co-operative Research Centre for Eye Research and Technology, University of New South Wales, Sydney 2052, Australia.
Keith M McLean
Affiliation:
CSIRO Molecular Science, Clayton Laboratory, Private Bag 10. Clayton South, Victoria 3169, Australia. Co-operative Research Centre for Eye Research and Technology, University of New South Wales, Sydney 2052, Australia.
Gerrit J Beumer
Affiliation:
CSIRO Molecular Science, Clayton Laboratory, Private Bag 10. Clayton South, Victoria 3169, Australia. Co-operative Research Centre for Eye Research and Technology, University of New South Wales, Sydney 2052, Australia.
Xiaoyi Gong
Affiliation:
CSIRO Molecular Science, Clayton Laboratory, Private Bag 10. Clayton South, Victoria 3169, Australia.
Peter Kingshot
Affiliation:
CSIRO Molecular Science, Clayton Laboratory, Private Bag 10. Clayton South, Victoria 3169, Australia. Co-operative Research Centre for Eye Research and Technology, University of New South Wales, Sydney 2052, Australia.
Graham Johnson
Affiliation:
CSIRO Molecular Science, North Ryde Laboratory, PO Box 184, North Ryde, New South Wales, 2113, Australia. Co-operative Research Centre for Eye Research and Technology, University of New South Wales, Sydney 2052, Australia.
John G Steele
Affiliation:
CSIRO Molecular Science, North Ryde Laboratory, PO Box 184, North Ryde, New South Wales, 2113, Australia. Co-operative Research Centre for Eye Research and Technology, University of New South Wales, Sydney 2052, Australia.
Corresponding
Get access

Abstract

Coatings of biologically active molecules on synthetic ”bulk“materials are of much interest for biomedical applications since they can in principle elicit specific, predictable. controlled responses of the host environment to an implanted device. However, issues such as shelf life. storage conditions, biological safety, and enzymatic attack in the biological environment must be considered; synthetic proteins may offer advantages. In this study we investigated the covalent immobilization onto polymeric materials of synthetic proteins which possess some properties that mimic those of the natural protein collagen, particularly the ability to form triple helical structures, and thus may provide similar bio-responses while avoiding enzymatic degradation. In order to perform immobilization of these collagen-like molecules (CLMs) under mild reaction conditions, the bulk materials are first equipped with suitable surface groups using rf plasma methods. Plasma polymer interlayers offer advantages as versatile reactive platforms for the immobilization of proteins and other biologically active molecules. Application of a thin plasma polymer coating from an aldehyde monomer is particularly suitable as it enables direct immobilization of CLMs by reaction with their terminal amine groups, using reductive amination chemistry. An alternative route is via plasma polymer layers that contain carboxylic acid groups and using carbodiimnide chemistry. A third route makes use of alkylamme plasma polymer interlayers, which are less process sensitive than aldehyde and acid plasma coatings. A layer of poly-carboxylic acid compounds such as carboxylic acid terminated PAMAM-starburst dendrimers or carboxymethylated dextran is then attached by carbodiimide chemistry onto the amine plasma layer. Amine-terminated CLMs can then be immobilized onto the poly-carboxylic acid layer. Surface analytical methods have been used to characterize the immobilization steps and to assess the surface coverage. Initial cell attachment and growth assays indicate that the biological performance of the CLMs depends on their amino acid sequence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1. “Primaria. A uniquely modified tissue culture surface that mimics in vivo conditions - in vitro”. Product information sheet, Becton Dickinson Labware, Lincoln Park, NJ. USA, 1986.Google Scholar
2. Nicolson, P. et al., US Patent 5 760 100 (1995).Google Scholar
3. Grzesiak, J.J., Pierschbacher, M.D., Amodeo, M.F., Malaney, T.I., and Glass, J.R., Biomaterials 18, 1652 (1997).CrossRefGoogle Scholar
4. El-Ghannam, A., Starr, L., and Jones, J., J. Biomed. Mater. Res. 41, 30 (1998).3.0.CO;2-R>CrossRefGoogle Scholar
5. Neff, J.A., Caldwell, K.D., and Tresco, P.A.. J. Biomed. Mater. Res. 40, 511 (1998).3.0.CO;2-I>CrossRefGoogle Scholar
6. Lin, H-B., Garcia-Echeverria, C., Asakura, S., Sun, W., Mosher, D.F., and Cooper, S.L., Biomaterials 13, 905 (1992).CrossRefGoogle Scholar
7. Massia, S.P. and Hubbell, J. A., Anal. Biochem. 187, 292. (1990).CrossRefGoogle Scholar
8. Olbrich, K.C., Andersen, T.T., Blumenstock, F.A. and Bizios., R. Biomaterials 17, 759. (1996).CrossRefGoogle Scholar
9. Huber, M., Heiduschka, P., Kienle, S., Pavlidis, C., Mack, J., Walk, T., Jung, G., and Thanos, S., J. Biomed. Mater. Res. 41, 278 (1998).3.0.CO;2-H>CrossRefGoogle Scholar
10. Simon, R.J., Kania, R.S., Zuckermann, R.N., Huebner, V.D., Jewell, D.A., Banville, S.. Ng, S.,Wang, L., Rosenberg, S., Marlowe, C.K., Spellmeyer, D.C., Tan, R., Frankel, A.D., Santi, D.V., Cohen, F.E., and Bartlett, P. A., Proc. Natl. Acad, Sci. USA 89, 9367 (1992).CrossRefGoogle Scholar
11. Goodman, M., Melancini, G., and Feng, Y., J. Amer. Chem. Soc. 118, 10928 (1996).CrossRefGoogle Scholar
12. Melacini, G., Feng, Y., and Goodman, M., J. Amer. Chem. Soc. 118, 10725 (1996).CrossRefGoogle Scholar
13. Feng, Y., Melancini, G., Taulane, J., and Goodman, M., Biopolymers 39, 859 (1996).3.0.CO;2-Z>CrossRefGoogle Scholar
14. Feng, Y., Melancini, G, and Goodman, M., Biochemistry 36, 8716 (1997).CrossRefGoogle Scholar
15 Beumer, G.J., Chatelier, R.C., John, H.A.W. St., and Griesser, H.J., Proc. 5th World Biomater. Congr., May 29- June2, Toronto, Canada. 1-881 (1996).Google Scholar
16. Gong, X. and Griesser, H.J., Plasmas & Polym. 2, 261 (1997).CrossRefGoogle Scholar
17. Griesser, H.J. and Chatelier, R.C., J. Appl. Polym. Sci: Appl. Polym. Symp. 46, 361 (1990).CrossRefGoogle Scholar
18. Gengenbach, T.R., Vasic, Z.R., Chatelier, R. C., and Griesser, H.J., J. Polym. Sci.. Pt A.: Polym. Chem. 32, 1399 (1994).CrossRefGoogle Scholar
19. Gengenbach, T.R., Chatelier, R.C., and Griesser, H.J., Surf. Interf. Anal. 24, 271 (1996).Google Scholar
20. Gengenbach, T.R., Chatelier, R.C., and Griesser, H.J., Surf. Interf. Anal. 24, 611 (1996).3.0.CO;2-7>CrossRefGoogle Scholar
21. Kingshott, P., John, H.A.W. St, Chatelier, R.C., and Griesser, H.J., J. Biomed. Mater. Res., submitted (1998).Google Scholar
22. Evans, M.D.M. and Steele, J.G., Exp. Cell Res. 233, 88 (1997).CrossRefGoogle Scholar
23. Underwood, P.A. and Bennett, F.A., J. Cell Sci. 93, 641 (1989).Google Scholar
24. McLean, K.M., McArthur, S.L., Chatelier, R.C., Kingshott, P., and Griesser, H.J., Coll. Surf. B: Biointerfaces, submitted (1998).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Surface Immobilization of Synthetic Proteins Via Plasma Polymer Interlayers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Surface Immobilization of Synthetic Proteins Via Plasma Polymer Interlayers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Surface Immobilization of Synthetic Proteins Via Plasma Polymer Interlayers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *