Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-5rzhg Total loading time: 0.196 Render date: 2021-12-03T14:45:45.514Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Superlattices from Diamond

Published online by Cambridge University Press:  31 January 2011

Hideyuki Watanabe
Affiliation:
hideyuki-watanabe@aist.go.jp
S. Shikata
Affiliation:
Diamond Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Japan, hideyuki-watanabe@aist.go.jp
Get access

Abstract

Diamond superlattices were fabricated by producing multilayer structures of isotopically pure carbon-12 (12C) and carbon-13 (13C), which confine electrons by a difference in band-gap energy. Secondary ion mass spectrometry (SIMS) measurements were employed to characterize the isotopic composition of the diamond superlattices. Layers between 2 nm and 350 nm in thickness can be designed and fabricated using a microwave plasma-assisted chemical vapor deposition technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ehrenreich, H., Turnbull, D. Eds., Solid State Phys.:Advances in Research and Applications, Vol. 44 (Academic Press, INC. 1991).Google Scholar
2 Watanabe, H., Nebel, C. E., Shikata, S., Science 324, 1425 (2009).CrossRefGoogle Scholar
3 Ager, J. W. III , Haller, E. E., Phys. Stat. Sol. A 203, 3550 (2006).CrossRefGoogle Scholar
4 Haller, E. E., Solid State Commun. 133, 693 (2005).CrossRefGoogle Scholar
5 Itoh, K. M., Haller, E. E., Phys. E 10, 463 (2001).CrossRefGoogle Scholar
6 Watanabe, H., Nebel, C. E., Shikata, S., Proc. New Diamond and Nano Carbons 202 (2008).Google Scholar
7 Cardona, M., Thewalt, M. L.W., Rev. Mod. Phys. 77, 1173 (2005).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Superlattices from Diamond
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Superlattices from Diamond
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Superlattices from Diamond
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *