Hostname: page-component-cd4964975-4wks4 Total loading time: 0 Render date: 2023-04-02T07:56:56.767Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Superlattice Nanowires

Published online by Cambridge University Press:  15 February 2011

K. Attenborough
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
R. Hart
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
W. Schwarzacher
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
J-PH. Ansermet
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
A. Blondel
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
B. Doudin
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
J.P. Meier
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
Get access

Abstract

CoNiCu/Cu superlattice nanowires have been grown by electrodeposition in nuclear tracketched nanoporous membranes. Transmission electron microscopy (TEM) images show a good layer structure and allow an estimate of the current efficiency. Current perpendicular to plane (CPP) giant magnetoresistance of up to 22%, at ambient temperature, has been measured but appears to be limited by defects, giving rise to ferromagnetic interlayer coupling, at low nonmagnetic layer thicknesses. Magnetic properties of the superlattice nanowires are influenced by in-plane anisotropy and magnetostatic coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , Pratt Jr, Lee, S-F., Slaughter, J.M., Lolee, R., Schroeder, P.A. and Bass, J., Phy. Rev. Lett. 66, 3060 (1991).CrossRefGoogle Scholar
2. Gijs, M.A.M., Lenczowski, S.K.J. and Giesbers, J.B., Phy. Rev. Lett. 70, 3343 (1993).CrossRefGoogle Scholar
3. Valet, T. and Fert, A., J. Magn. Magn. Mat. 121, 378 (1993).CrossRefGoogle Scholar
4. Alper, M., Aplin, P.S., Attenborough, K., Dingley, D.J., Hart, R., Lane, S.J., Lashmore, D.S. and Schwarzacher, W., J. Magn. Magn. Mat. 126, 8 (1993); M Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes and W. Schwarzacher, Appl. Phys. Lett. 63, 2144 (1993).CrossRefGoogle Scholar
5. Possin, G.E., Rev. Sci. Inst. 41, 772 (1990).CrossRefGoogle Scholar
6. Penner, R.M. and Martin, C.R., Anal. Chem. 59, 2625 (1987).CrossRefGoogle Scholar
7. Whitney, T.M., Jiang, J.S., Searson, P.C. and Chien, C.L., Science 261, 1316 (1993).CrossRefGoogle Scholar
8. Blondel, A., Meier, J.P., Doudin, B. and Ansermet, J-Ph., Appl. Phys. Lett. 65, 3019 (1994).CrossRefGoogle Scholar
9. Blondel, A., Meier, J.P., Doudin, B., Ansermet, J-Ph., Attenborough, K., Evans, P., Hart, R., Nabiyouni, G., Schwarzacher, W. (to be published in J. Magn. Magn. Mat. 1995).Google Scholar
10. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E. and Legras, R., Appl. Phys. Lett. 65, 24842486 (1994).CrossRefGoogle Scholar
11. Liu, K., Nagodawithana, K., Searson, P.C. and Chien, C.L., Phy. Rev B 51, 7381 (1995).CrossRefGoogle Scholar
12. Alper, M., Hart, R., Attenborough, K., Schwarzacher, W. (in preparation).Google Scholar
13. Attenborough, K, Meier, J.P., Hart, R., Schwarzacher, W., Doudin, B. and Ansermet, J-Ph. (in preparation).Google Scholar
14. Voegeli, B., Blondel, A., Doudin, B. and Ansennet, J-Ph. (to be published in J. Magn. Magn. Mat. 1995).Google Scholar