Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.201 Render date: 2021-11-28T01:47:54.142Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Superlattice Nanowires

Published online by Cambridge University Press:  15 February 2011

K. Attenborough
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
R. Hart
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
W. Schwarzacher
Affiliation:
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL., UK
J-PH. Ansermet
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
A. Blondel
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
B. Doudin
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
J.P. Meier
Affiliation:
Institut de Physique Experimentale, EPFL, PHB-Ecublens, CH-1015, Lausanne, Switzerland
Get access

Abstract

CoNiCu/Cu superlattice nanowires have been grown by electrodeposition in nuclear tracketched nanoporous membranes. Transmission electron microscopy (TEM) images show a good layer structure and allow an estimate of the current efficiency. Current perpendicular to plane (CPP) giant magnetoresistance of up to 22%, at ambient temperature, has been measured but appears to be limited by defects, giving rise to ferromagnetic interlayer coupling, at low nonmagnetic layer thicknesses. Magnetic properties of the superlattice nanowires are influenced by in-plane anisotropy and magnetostatic coupling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. , Pratt Jr, Lee, S-F., Slaughter, J.M., Lolee, R., Schroeder, P.A. and Bass, J., Phy. Rev. Lett. 66, 3060 (1991).CrossRefGoogle Scholar
2. Gijs, M.A.M., Lenczowski, S.K.J. and Giesbers, J.B., Phy. Rev. Lett. 70, 3343 (1993).CrossRefGoogle Scholar
3. Valet, T. and Fert, A., J. Magn. Magn. Mat. 121, 378 (1993).CrossRefGoogle Scholar
4. Alper, M., Aplin, P.S., Attenborough, K., Dingley, D.J., Hart, R., Lane, S.J., Lashmore, D.S. and Schwarzacher, W., J. Magn. Magn. Mat. 126, 8 (1993); M Alper, K. Attenborough, R. Hart, S.J. Lane, D.S. Lashmore, C. Younes and W. Schwarzacher, Appl. Phys. Lett. 63, 2144 (1993).CrossRefGoogle Scholar
5. Possin, G.E., Rev. Sci. Inst. 41, 772 (1990).CrossRefGoogle Scholar
6. Penner, R.M. and Martin, C.R., Anal. Chem. 59, 2625 (1987).CrossRefGoogle Scholar
7. Whitney, T.M., Jiang, J.S., Searson, P.C. and Chien, C.L., Science 261, 1316 (1993).CrossRefGoogle Scholar
8. Blondel, A., Meier, J.P., Doudin, B. and Ansermet, J-Ph., Appl. Phys. Lett. 65, 3019 (1994).CrossRefGoogle Scholar
9. Blondel, A., Meier, J.P., Doudin, B., Ansermet, J-Ph., Attenborough, K., Evans, P., Hart, R., Nabiyouni, G., Schwarzacher, W. (to be published in J. Magn. Magn. Mat. 1995).Google Scholar
10. Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E. and Legras, R., Appl. Phys. Lett. 65, 24842486 (1994).CrossRefGoogle Scholar
11. Liu, K., Nagodawithana, K., Searson, P.C. and Chien, C.L., Phy. Rev B 51, 7381 (1995).CrossRefGoogle Scholar
12. Alper, M., Hart, R., Attenborough, K., Schwarzacher, W. (in preparation).Google Scholar
13. Attenborough, K, Meier, J.P., Hart, R., Schwarzacher, W., Doudin, B. and Ansermet, J-Ph. (in preparation).Google Scholar
14. Voegeli, B., Blondel, A., Doudin, B. and Ansennet, J-Ph. (to be published in J. Magn. Magn. Mat. 1995).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Superlattice Nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Superlattice Nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Superlattice Nanowires
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *