Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-8r8mm Total loading time: 0.27 Render date: 2021-12-07T06:58:06.493Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint

Published online by Cambridge University Press:  31 January 2011

Paola Ayala
Affiliation:
paola.ayala@univie.ac.at
Christian Kramberger
Affiliation:
christian.kramberger-kaplan@univie.ac.at, Universität Wien, Vienna, Austria
Yasumitsu Miyata
Affiliation:
yas-miyata@nano.chem.nagoya-u.ac.jp, University of Nagoya, Nagoya, Japan
Katrien De Blauwe
Affiliation:
katrien.deblauwe@univie.ac.at, Universität Wien, Vienna, Austria
Hidetsugu Shiozawa
Affiliation:
h.shiozawa@surrey.ac.uk, University of Surrey, Advanced Technology Institute, Guildford, United States
Rolf Follath
Affiliation:
follath@bessy.de, BESSY II, Berlin, Germany
Hiromichi Kataura
Affiliation:
h-kataura@aist.go.jp, AIST, Tsukuba, Japan
Thomas Pichler
Affiliation:
thomas.pichler@univie.ac.at, Universität Wien, Vienna, Austria
Get access

Abstract

The unique one-dimensional electronic and optical properties attributed to single-walled carbon nanotubes (SWCNTs) are mainly related to the peculiar local arrangement of sp2 hybridised carbon atoms. This structural configuration gives raise to interesting features, which can be identified with various spectroscopic techniques. In the case of SWCNTs, high energy spectroscopy methods represent effective key tools to analyse the modifications of the underlying basic correlation effects in the bonding environment, the charge transfer between functionalized nanotubes, and on-wall doping. More specifically, in this article we review the shape of the C1s photoemission (PES) response related to the density of states (DOS) of the valence band (VB) in SWCNTs and its changes upon on-wall functionalization and metallicity-sorting. In the last, the progress in the identification of changes in the site selective valence-band electronic structure is clarified in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, R., Dresselhaus, G., and Dresselhaus, M., Physical Properties of Carbon Nanotubes (1998) Imperial College Press, London.CrossRefGoogle Scholar
2. Hamada, N., Sawada, S., and Oshiyama, A., Phys Rev Lett. 68, 1579 (1992).CrossRefGoogle Scholar
3. Ayala, P., Arenal, R., Loiseau, A., Rubio, A., Pichler, T., Rev Mod Phy, 2010 (In Press)Google Scholar
4. Pichler, T., New Diam. Front. Carbon Technol, 11, 375 (2001).Google Scholar
5. Miyata, Y., Yanagi, K., Maniwa, Y., and Kataura, H., J Phys Chem C 112, 13187 (2008).CrossRefGoogle Scholar
6. Scholl, A., Zou, Y., Schmidt, T., Fink, R., and Umbach, E., J Electron Spec Rel Phenom, 129, 1 (2003).CrossRefGoogle Scholar
7. Kramberger, C., Rauf, H., Shiozawa, H., Knupfer, M., Buchner, B., Pichler, T., Batchelor, D., and Kataura, H., Phys Rev B, 75, 235437 (2007).CrossRefGoogle Scholar
8. Ishii, H., Kataura, H., Shiozawa, H., Yoshioka, H., Otsubo, H., Takayama, Y., Miyahara, T., Suzuki, S., Achiba, Y., Nakatake, M., et al., Nature, 426, 540 (2003).CrossRefGoogle Scholar
9. Rauf, H., Pichler, T., Knupfer, M., Fink, J., and Kataura, H., Phys Rev Lett, 93, 096805 (2004).CrossRefGoogle Scholar
10. Ayala, P., Miyata, Y., Blauwe, K. De, Shiozawa, H., Feng, Y., Yanagi, K., Kramberger, C., Silva, S.R.P., Follath, R., Kataura, H., and Pichler, T., Phys Rev B, 80, 205427 (2009)CrossRefGoogle Scholar
11. Doniach, S. and Sunjic, M., Jour Phys C, 3, 285 (1970).CrossRefGoogle Scholar
12. Prince, K.C., Ulrych, I., Peloi, M., Ressel, B., Chab, V., Crotti, C., and Comicioli, C., Phys Rev B, 62, 6866 (2000).CrossRefGoogle Scholar
13. Suzuki, S., Bower, C., Kiyokura, T., Nath, K. G., Watanabe, Y., and Zhou, O., J Elect Spectr Relat Phenom, 114, 225 (2001).CrossRefGoogle Scholar
14. Goldoni, A., Cepek, C., Larciprete, R., Sangaletti, L., Pagliara, S., Paolucci, G., and Sancrotti, M., Phys Rev Lett, 88, 196102 (2002).CrossRefGoogle Scholar
15. Ayala, P., Arenal, R., Rümmeli, M.H., Rubio, A., Pichler, T., Carbon, 48, 575 (2010).CrossRefGoogle Scholar
16. Kim, S., Lee, J., Na, C., Park, J., Seo, K., and Kim, B., Chem Phys Lett, 413, 300 (2005).CrossRefGoogle Scholar
17. Ayala, P., Grüneis, A., Gemming, T., Grimm, D., Kramberger, C., Rümmeli, M.H., Freire, F.L. Jr. , Kuzmany, H., Pfeiffer, R., Barreiro, A., Büchner, B., and Pichler, T., Jour Phys Chem C, 101, 2879 (2007)CrossRefGoogle Scholar
18. Ayala, P., Freire, F.L. Jr. , Rümmeli, M.H., Grüneis, A., Pichler, T., Phys Stat Sol B, 244, 4051 (2007)CrossRefGoogle Scholar
19. Elias, A.L., Ayala, P.., Zamudio, A., Grobosch, M., Cruz-Silva, E., Romo-Herrera, J.M., Campos, J., Terrones, H., Pichler, T., Terrones, M., Jour Nanosc Nanotech, 6, 1 (2010)Google Scholar
20. Gai, P., Stephan, O., McGuire, K., Rao, A., Dresselhaus, M., Dresselhaus, G., and Colliex, C., Jour Mat Chem, 14, 669 (2004).CrossRefGoogle Scholar
21. Ayala, P., Plank, W., Grüneis, A., Kauppinen, E., Rümmeli, M., Kuzmany, H., and Pichler, T., Jour Mat Chem, 18, 5676 (2008)CrossRefGoogle Scholar
22. Daothong, S., Parjanne, J., Kauppinen, E. I., Valkeapaa, M., Pichler, T., Singjai, P. and Ayala, P., Phys Stat Sol B, 246, 2518 (2009)CrossRefGoogle Scholar
23. Shirasaki, T., Derré, A., Ménétrier, M., Tressaud, A., and Flandrois, S., Carbon, 38, 1461 (2000)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *