Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-wvgct Total loading time: 0.247 Render date: 2021-07-26T03:08:51.266Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Substitution Behavior of Ni3X-type Compounds with D0a Structure

Published online by Cambridge University Press:  15 March 2011

H. Sugimura
Affiliation:
Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
Y. Kaneno
Affiliation:
Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
T. Takasugi
Affiliation:
Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
Get access

Abstract

The site preference of ternary additions in GCP (geometrically close-packed) Ni3X-type compounds with D0a structure was determined from the direction of the single-phase region of the D0a phase in the reported ternary phase diagrams. The thermodynamic model based on the Bragg-Williams approximation, which is based on the change in heat of formation of the host compound by a small addition of ternary solute, was applied to predict the site preference of ternary additions. The heat of formation used in the thermodynamic calculation was derived from Miedema’s formula. Good agreement was obtained between the thermodynamic model and the result of the literature search.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Van Vucht, J.H.N., J. Less-Common Met. 11, 308 (1966).CrossRefGoogle Scholar
2. Sinha, A.K., Trans. Metall. Soc. AIME 245, 911 (1969).Google Scholar
3. Niessen, A.K., Miedema, A.R., de Boer, F.R., and Boom, R., Physica B 152 303 (1988).CrossRefGoogle Scholar
4. Quinn, R.T., Kraft, R.W. and Hertzberg, R.W., Trans. Am. Soc. Met. 62, 38 (1969).Google Scholar
5. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 12, 389 (2004).CrossRefGoogle Scholar
6. Ohira, K., Kaneno, Y. and Takasugi, T., Mater. Sci. Eng., A 399, 332 (2005).CrossRefGoogle Scholar
7. Ohira, K., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 14, 367 (2006).CrossRefGoogle Scholar
8. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Acta Mater. 54, 851 (2006).CrossRefGoogle Scholar
9. Shibuya, S., Kaneno, Y., Yoshida, M., Shishido, T. and Takasugi, T., Intermetallics 15, 119 (2007).CrossRefGoogle Scholar
10. Shibuya, S., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 15, 338 (2007).CrossRefGoogle Scholar
11. Ochiai, S., Oya, Y. and Suzuki, T., Acta Metall. 32, 289 (1984).CrossRefGoogle Scholar
12. Miedema, A.R., Boom, R. and de Boer, F.R., Crystal Structure and Chemical Bonding in Inorganic Chemistry, ed. Rooymans, C.J.M. and Rabenau, A., (North-Holland/American Elsevier, 1975) p.163.Google Scholar
13. Miedema, A.R. and du Chatel, P.F., Theory of Alloy Phase Formation, edited by Bennet, L.H., (Metall. Soc. A.I.M.E, 1980) p.334.Google Scholar
14. Liu, Y., Takasugi, T. and Izumi, O., Metall. Trans. A 17, 1433 (1986).CrossRefGoogle Scholar
15. Sugimura, H., Kaneno, Y. and Takasugi, T., Mater. Trans., JIM 51, 72 (2010).CrossRefGoogle Scholar
16. Sugimura, H., Kaneno, Y. and Takasugi, T., J. Alloys Compd. 496, 116 (2010).CrossRefGoogle Scholar
17. Sugimura, H., Kaneno, Y. and Takasugi, T., Mater. Sci. Forum, 654-656, 440 (2010).CrossRefGoogle Scholar
18. Flinn, P.A., Trans. Met. Soc. AIME, 218, 145 (1960)Google Scholar
19. Panteleimonov, L.A., Burtseva, O.G. and Zubenko, V.V., Moscow Univ. Chem. Bull. 37 (1), 71 (1982).Google Scholar
20. Gupta, K.P., Rajendraprasad, S.B. and Jena, A.K., J. Alloy Phase Diagrams 6, 14 (1990).Google Scholar
21. Kodentsov, A.A., Dunaev, S.F., Slyusarenko, E.M. and Sokolovskaya, E.M., Moscow Univ. Chem. Bull. 41 (3), 58 (1986).Google Scholar
22. Gupta, K.P., Phase Diagrams Ternary Nickel Alloys, Trans. Indian Inst. Met. 1, 49 (1990).Google Scholar
23. Svechnikov, V.N. and Pan, V.M., Dopov. Akad. Nauk. Ukr. RSR. 634, (1960).Google Scholar
24. Kodentsov, A.A., Dunaev, S.F. and Slyusarenko, E.M., Moscow Univ. Chem. Bull. 43 (3), 90 (1988).Google Scholar
25. Raghavan, V., Indian Inst. Met. 6B, 1025 (1992).Google Scholar
26. Gupta, K.P., Indian Inst. Met. 2, 163 (1991).Google Scholar
27. Pryakhina, L.I., Myasnikova, K.P., Burnasheva, V.V., Cherkashin, E.E. and Markiv, V.Y., Powder Metall. Met. Ceram. 5, 643 (1966).CrossRefGoogle Scholar
28. Gupta, K.P., Indian Inst. Met. 2, 177 (1991).Google Scholar
29. Gupta, K.P., Indian Inst. Met. 2, 185 (1991).Google Scholar
30. Tikhankin, G.A., Meshkov, L.L. and Sokolovskaya, E.M., Moscow Univ. Chem. Bull. 31 (1), 88 (1976).Google Scholar
31. Nash, P., West, D.R.F., Met. Sci. 13, 670 (1979).CrossRefGoogle Scholar
32. Kaufman, L., Calphad 15, 261 (1991).CrossRefGoogle Scholar
33. Zakharov, A., Aluminium-Nickel-Tantalum, Vol. 7 (Ternary Alloys, VCH, 1993) p.483.Google Scholar
34. Hong, Y.M., Mishima, Y. and Suzuki, T., Mater. Res. Soc. Symp. Proc. 133, 429 (1989).CrossRefGoogle Scholar
35. Willemin, P., Dugué, O., Durand Charre, M. and Davidson, J.H., Mater. Sci. Technol. 2, 344 (1986).CrossRefGoogle Scholar
36. Nesterenko, S.N., Osipov, A.K., Meshkov, L.L. and Sokolovskaya, E.M., Moscow Univ. Chem. Bull. 35(3), 64 (1980).Google Scholar
37. Schittny, S.U., Lugscheider, E. and Knotek, O., Thermochim. Acta 85, 167 (1985).CrossRefGoogle Scholar
38. Gupta, K.P., Trans. Indian Inst. Met. (1), 219 (1990).Google Scholar
39. Uskova, E.N. and Meshkov, L.L., Moscow Univ. Chem. Bull. 46(4), 81 (1991).Google Scholar
40. Bernard, V.B., Kuprina, V.V. and Burnasheva, V.V., Moscow Univ. Chem. Bull. 28(3), 71 (1973).Google Scholar
41. Slyusarenko, E.M., Peristyi, A.V., Kerimov, E.Y., Guzei, I.L. and Sofin, M.V., J. Alloys Compd. 256, 115 (1997).CrossRefGoogle Scholar
42. Gupta, K.P., Indian Inst. Met. (2), 92 (1991).Google Scholar
43. Chakravorty, S. and West, D.R.F., Met. Sci. 17, 573 (1983).CrossRefGoogle Scholar
44. Gupta, K.P., Indian Inst. Met. (2), 152 (1991).Google Scholar
45. Kornilov, I.I. and Pylaeva, E.N., Zh. Neorg. Khim. 1, 308 (1956).Google Scholar
46. Slyusarenko, E.M., Peristyi, A.V., Kerimov, E.Y., Sofin, M.V. and Skorbov, D.Y., J. Alloys Compd. 264, 180 (1998).CrossRefGoogle Scholar
47. Ametov, I.V., Dunaev, S.F., Slyusarenko, E.M. and Peristyi, A.V., Moscow Univ. Chem. Bull. 45(1), 50 (1990).Google Scholar
48. Maslenkov, S.B., Burova, N.N. and Rodimkina, V.A., Russ. Metall. (6), 179 (1988).Google Scholar
49. Markiv, V.Y., Burnasheva, V.V., Pryakhina, L.I. and Myasnikova, K.P., Russ. Metall. (5), 117 (1969).Google Scholar
50. Kubaschewski, O., Aluminium-Molybdenum-Nickel, (Ternary Alloys, VCH 7, Germany, 1993) p. 199.Google Scholar
51. Turchi, P.E.A., Kaufman, L. and Liu, Z.K., Calphad. 30, 70 (2006).CrossRefGoogle Scholar
52. Eremenko, V.N., Tret’yachenko, L.A., Prima, S.B. and Semenova, E.L., Powder Metall. Met. Ceram. 23, 613 (1984).CrossRefGoogle Scholar
53. Gupta, K.P., Indian Inst. Met. (2), 108 (1991).Google Scholar
54. Meshkov, L.L., Nesterenko, S.N. and Ishchenko, T.V., Russ. Metall. (2), 204 (1985).Google Scholar
55. Gupta, K.P., Indian Inst. Met. (2), 134 (1991).Google Scholar
56. Kaufman, L. and Nesor, H., Metall. Trans. 5, 1617 (1974).CrossRefGoogle Scholar
57. Virkar, A.V., Raman, A., Z. Metallkd. 60, 594 (1969).Google Scholar
58. Gupta, K.P., Indian Inst. Met. (2), 83 (1991).Google Scholar
59. Prime, S.B., Petyukh, V.M., Dan'ko, I.V. and Vyssh, Izv.. Zaved, Uchebn.., Tsvetn. Met. (Moscow) (3), 86 (1991).Google Scholar
60. Raevskaya, M.V., Lashuk, E.P., Kazakova, E.F. and Sokolova, I.G., J. Less-Common Met. 99, L15 (1984).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Substitution Behavior of Ni3X-type Compounds with D0a Structure
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Substitution Behavior of Ni3X-type Compounds with D0a Structure
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Substitution Behavior of Ni3X-type Compounds with D0a Structure
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *