Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-p4zth Total loading time: 0.326 Render date: 2021-08-03T03:22:22.508Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

SU8 / modified MWNT composite for piezoresistive sensor application

Published online by Cambridge University Press:  20 January 2011

Prasenjit Ray
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
V. Seena
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
Rupesh A. Khare
Affiliation:
Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
Arup R. Bhattacharyya
Affiliation:
Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
Prakash R. Apte
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
Ramgopal Rao
Affiliation:
Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
Get access

Abstract

SU-8 is being increasingly used as a compliant structural material for MEMS applications due to its interesting properties such as lower Young’s modulus and higher mechanical and thermal stability. One of the popular classes of MEMS devices is a piezoresitive microcantilever. Ultra-sensitive polymer composite cantilevers made up of SU-8 as a structural layer and 10% carbon Black in SU8 as a piezoresistive layer with lower Young’s modulus and higher gauge factor have been reported recently by our group. Higher electrical conductivity at lower concentration of conductive filler is of increased interest. Here we report a novel composite with purified multiwall carbon nanotubes (MWNT) in SU8 as a piezoresistor. MWNT were modified with octadecyl triphenyl phosphonium bromide (OTPB) in order to achieve debundled MWNT. A microcantilever device with integrated MWNT/SU-8 composite has been fabricated and characterized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tortonese, M., Yamada, H., Barrett, R. C., and Quate, C. F., in The Proceeding of Transducers ’91 IEEE , Piscataway, NJ, 1991, pp. 448451.Google Scholar
2. Harley, J. A. and Kenny, T. W. Appl. Phys. Lett. 75, 289 (1999)CrossRefGoogle Scholar
3. Giessibl, F. J. and Trafas, B. M., Rev. Sci. Instrum. 65, 1923 (1994).CrossRefGoogle Scholar
4. Boisen, A., Thaysen, J., Jensenius, H., and Hansen, O., Ultramicroscopy 82,11 (2000)CrossRefGoogle Scholar
5. Yang, Mo, Zhang, Xuan, Vafai, Kambiz and Ozkan, Cengiz S, J. Micromech. Microeng. 13(2003) pp. 864872 CrossRefGoogle Scholar
6. Johnny, H. HE and Yong Feng, L.I., Journal of Physics: Conference Series 34 (2006) pp 429435.Google Scholar
7. Jin, Dazhong, Li, Xinxin, Liu, Jian, Zuo, Guomin, YuelinWang, , Liu, Minand Yu, Haitao, J. Micromech. Microeng. 16 (2006) pp 10171023.CrossRefGoogle Scholar
8. Thaysen, J., Yal,cinkaya, A.D, Vettiger, P. and Menon, A., J. Phys. D: Appl. Phys 35(2002) pp 26982703.CrossRefGoogle Scholar
9. Kale, N.S., Nag, S., Pinto, R., Rao, V.R. J. Microelectromech. Syst 18 (2009) pp7987 CrossRefGoogle Scholar
10. V., Seena, Kale, N.S., N., Sudip, Joshi, M., Mukherji, S., Rao, V.R. Int.J. Micro and Nano Syst.1(2009) pp. 6570.Google Scholar
11. Gammelgaard, L., Rasmussen, P. A., Calleja, M., Vettiger, P., and Boisen, A., Appl. Phys. Lett., 88(2006) 113508.CrossRefGoogle Scholar
12. Seena, V., Rajorya, Anukool, Pant, Prita, Mukherji, Soumyo, Ramgopal Rao, V., Solid State Sciences 11 (2009) pp. 16061611.CrossRefGoogle Scholar
13. Seena, V., Rajorya, A., Fernaundus, A., Dhale, K., Pant, P.,.Mukherji, S., Rao, V.R., Proceedings of the 23rd IEEE International Conference on Micro Electro Mechanical Systems (2010), January 24–28, 2010, Hong Kong, pp. 851854 CrossRefGoogle Scholar
14. Bose, S., Bhattacharyya, A.R., Khare, R.A., Kulkarni, A.R., Patro, T.U., and Sivaraman, P., Nanotechnology, 19, 335704 (2008).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

SU8 / modified MWNT composite for piezoresistive sensor application
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

SU8 / modified MWNT composite for piezoresistive sensor application
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

SU8 / modified MWNT composite for piezoresistive sensor application
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *