Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-n4hhg Total loading time: 0.2 Render date: 2021-05-11T08:24:19.783Z Has data issue: true Feature Flags: {}

Study on Synthesis Chitosan Oligomer Stabilized Silver Nanoparticles Using Green Chemistry and Their Burn Wound Healing Effects

Published online by Cambridge University Press:  31 July 2012

Yun Ok Kang
Affiliation:
Department of Nano Technology, Chungnam National University, Daejeon, Korea
Won Ho Park
Affiliation:
Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, Korea
Get access

Abstract

The preparation of metal nanoparticles is a major research area in technical engineering due to their unusual properties, such as catalytic activity, novel electronic, optic and magnetic properties and biotechnology. Specially, silver has been used for years in the medical field for antimicrobial applications because it known for its antimicrobial properties and even has shown to prevent HIV binding to host cells. Common synthesis, chemical and physical methods using chemical reducing agent and organic solvent are not too suitable to have application to bioengineering because they should have associated environmental toxicity or biological hazards. Development of sustainable processes through green chemistry is attractive about the elimination or minimization of chemical waste. Here, we introduce the green method for preparation of silver nanoparticles using chitosan oligomer as both reducing and stabilizing agent in water. We expect that the use of environmentally benign solvent and chitosan oligomer to prepare silver nanoparticles offers numerous benefits and compatibility for pharmaceutical and biomedical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Khan, Z., Al-Thabaiti, S. A., Obaid, A. Y., and Al-Youbi, A. O., Colloids and surface B: Biointerfaces 82, 513 (2011).CrossRefGoogle Scholar
2. Raveendran, P., Fu, J., and Wallen, S. L., Journal of American Chemical Society, 125, 13940 (2003).CrossRefGoogle Scholar
3. Sharma, V. K., Yngard, R. A., and Lin, Y, Advances in Colloid and Interface Science, 145, 83 (2009).Google Scholar
4. Mehta, S. K., Chaudhary, S., Gradzielski, M., Journal of Colloid and Interface Science 343, 447 (2010).CrossRefGoogle Scholar
5. Patakfalvi, R., Papp, S., and Dekany, I., Journal of Nanoparticle Research 9, 353 (2007).CrossRefGoogle Scholar
6. Tran, H. V., Tran, L. D., Ba, C. T., Vu, H. D., Nguyen, T. N., Pham, D. G., and Nguyen, P. S., Colloids and surfaces A: Physicochemical and Engineering Aspects, 360, 32 (2010).CrossRefGoogle Scholar
7. Rabea, E. I., Badawy, M. E., Stevens, C. V., Smagghe, G., Steurbaut, W., Biomacromolecules 4, 1457 (2003).CrossRefGoogle Scholar
8. Dai, T., Tanaka, M., Y- Huang, Y., Hamblin, M. R., Expert Reviews of Anti-infective Therapy 9, 857 (2011).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study on Synthesis Chitosan Oligomer Stabilized Silver Nanoparticles Using Green Chemistry and Their Burn Wound Healing Effects
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study on Synthesis Chitosan Oligomer Stabilized Silver Nanoparticles Using Green Chemistry and Their Burn Wound Healing Effects
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study on Synthesis Chitosan Oligomer Stabilized Silver Nanoparticles Using Green Chemistry and Their Burn Wound Healing Effects
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *