Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-18T15:52:23.642Z Has data issue: false hasContentIssue false

Study of SI1−xGEx / SI / SI1−xGEx Heterostructures with abrupt interfaces for ultrahigh mobility FETS

Published online by Cambridge University Press:  10 February 2011

N. Sugii
Affiliation:
Central Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
K. Nakagawa
Affiliation:
Central Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
S. Yamaguchi
Affiliation:
Central Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
M. Miyao
Affiliation:
Central Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
Get access

Abstract

We grew Si1−x, Gex / Si / Si1−xGex heterostructures with abrupt interfaces for a high-speed device application. In order to eliminate the interface and the impurity scatterings, a two-stepsolid-phase epitaxy (SPE) was developed newly. This SPE can obtain an abrupt interface between the upper Si1−xGex. and the Si-channel layers as well as a sharp Sb-doping profile in the upper Si1−xGex layer. Single-step SPE growth of the Si1−xGex. layer including the Sb-doped layer caused solid state diffusion of Sb and made the doping-profile difficult to control. A two-step SPE, (that is, two independent SPE processes forming the Si1−xGex. and the Sb-doped layers), obtained a sharp Sb depth profile and high electrical activation in the Sb-doped Si1−xGex. layer. However, the number of modulation-doped carriers in the Si channel layer was small. Calculation of the carrier distribution between the channel and the doped layer suggests that the carrier density in the channel is low when the Sb-doping profile is extremely sharp; thus, precise control of the modulation-doped-carrier density by optimizing the thickness of the Sb-doped layer is crucial for operating modulation-doped field-effect transistors (MODFETs).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abstreiter, G., Brugger, H., and Wolf, T.: Phys. Rev. Lett. 54 (1985) 2441.Google Scholar
2. People, R., Bean, J. C., Lang, D. V., Sergant, A. M., Stormer, H. L., Wecht, K. W., Lynch, R. T., and Baldwin, K.: Appl. Phys. Lett. 45 (1984) 1231.Google Scholar
3. Wang, P. J., Meyerson, B. S., Fang, F. F., Nocera, J., and Parker, B.: Appl. Phys. Lett. 55 (1989) 2333.Google Scholar
4. Miyao, M., Murakami, E., Etoh, H., Nakagawa, K., and Nishida, A.: J. Crystal Growth 111 (1991) 912.Google Scholar
5. Schuberth, G., Schaffler, F., Besson, M., Abstreiter, G., and Gornik, E.: Appi. Phys. Lett. 59 (1991) 3318.Google Scholar
6. Ismail, K., Meyerson, B. S., and Wang, P. J.: Appl. Phys. Lett. 58 (1991) 2117.Google Scholar
7. Mii, Y. J., Xie, Y. H., Fitzgerald, E. A., Monroe, Don, Thiel, F. A., Weir, B. E., and Feldman, L. C.: Appl. Phys. Lett. 59 (1991) 1611.Google Scholar
8. Schäiffler, F., Tobben, D., Herzog, H. J., Abstreiter, G., and Hollander, B.: Semicond. Sci. Technol. 7 (1992) 260.Google Scholar
9. Yutani, A. and Shiraki, Y.: J. Crystal Growth 175/176 (1997) 504.Google Scholar
10. Sugii, N., Nakagawa, K., Kimura, Y., Yamaguchi, S., and Miyao, M.: Semicond. Sci. Technol. 13 (1998) A140.Google Scholar
11. Gorkum, A. A. van, Nakagawa, K., and Shiraki, Y.: J. Appl. Phys. 65 (1989) 2485.Google Scholar
12. Yamaguchi, K. and Geux, L.: private communication.Google Scholar