Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-2fphr Total loading time: 0.212 Render date: 2021-06-19T08:02:18.065Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A Study of Oxygen Reduction of Tin- or Zinc-doped Indium Oxide (ITO or IZO) Film Induced by Deposition of Silicon Nitride Film in PECVD Process

Published online by Cambridge University Press:  01 February 2011

Byoung-June Kim
Affiliation:
june67.kim@samsung.com, Samsung Electronics, Process Development Team, LCD R&D Center, LCD Business, Process Development Team, LCD R&D Center, Samsung LCD Business, Samsung Electronics,, Gyeonggi-Do, N/A, 449-711, Korea, Republic of, +82-31-209-9227, +82-31-209-1549
Youn-Mo Choi
Affiliation:
yongmo.choi@samsung.com, Samsung Electronics Co. Ltd., Process Development Team, LCD R&D Center, LCD Business, Gyeonggi-Do, N/A, 449-711, Korea, Republic of
Kunal Girotra
Affiliation:
kunal.girotra@samsung.com, Samsung Electronics Co. Ltd., Process Development Team, LCD R&D Center, LCD Business, Gyeonggi-Do, N/A, 449-711, Korea, Republic of
Sung-Hoon Yang
Affiliation:
sunghoon.yang@samsung.com, Samsung Electronics Co. Ltd., Process Development Team, LCD R&D Center, LCD Business, Gyeonggi-Do, N/A, 449-711, Korea, Republic of
Shi-Yul Kim
Affiliation:
shiyul.kim@samsung.com, Samsung Electronics Co. Ltd., Process Development Team, LCD R&D Center, LCD Business, Gyeonggi-Do, N/A, 449-711, Korea, Republic of
Soon-Kwon Lim
Affiliation:
peterlim@samsung.com, Samsung Electronics Co. Ltd., Process Development Team, LCD R&D Center, LCD Business, Gyeonggi-Do, N/A, 449-711, Korea, Republic of
Jun-Hyung Souk
Affiliation:
jun.souk@samsung.com, Samsung Electronics Co. Ltd., Process Development Team, LCD R&D Center, LCD Business, Gyeonggi-Do, N/A, 449-711, Korea, Republic of
Get access

Abstract

In the thin film transistor fabrication process, tin doped indium oxide (ITO) or zinc doped indium oxide (IZO) film can be easily exposed to hydrogen-containing plasma during the deposition of silicon nitride (SiNx) film. By this exposure, ITO or IZO can be easily reduced into its corresponding metallic element such as indium, which degrades the optical transmittance and the conductivity. In this study, SiNx was deposited onto ITO or IZO film, and the oxygen reduction of ITO or IZO during PECVD SiNx deposition was analyzed to clarify this phenomenon. The oxygen reduction during PECVD SiNx deposition is mainly induced by decomposed NH3 gas. However, the progress of ITO reduction is different from that of IZO reduction, due to the different atomic composition of In2O3 in the composite and the different critical temperature of reduction initiation between indium oxide, tin oxide, and zinc oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Latz, R., Michael, K., Scherer, M., Jpn. J. Phys. 30, L149 (1991)CrossRefGoogle Scholar
2 Tao, G., Zeman, M., Metselaar, J. W., Solar Energy Materials and Solar Cells 34, 359 (1994)CrossRefGoogle Scholar
3 Bender, M., Seelig, W., Daube, C., Frankenberger, H., Ocker, B., J. Stollenwerk, Thin Solid Films 326, 67 (1998)CrossRefGoogle Scholar
4 Lan, J. H. and Kanicki, J., Thin Solid Films 304, 123 (1997)CrossRefGoogle Scholar
5 Son, K. S., Choi, D. L., Lee, H. N., Lee, W. G., Current Appl. Phys. 2, 229 (2002)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Study of Oxygen Reduction of Tin- or Zinc-doped Indium Oxide (ITO or IZO) Film Induced by Deposition of Silicon Nitride Film in PECVD Process
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Study of Oxygen Reduction of Tin- or Zinc-doped Indium Oxide (ITO or IZO) Film Induced by Deposition of Silicon Nitride Film in PECVD Process
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Study of Oxygen Reduction of Tin- or Zinc-doped Indium Oxide (ITO or IZO) Film Induced by Deposition of Silicon Nitride Film in PECVD Process
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *