Hostname: page-component-cd4964975-8tfrx Total loading time: 0 Render date: 2023-03-27T21:29:25.839Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Study of Nano-cluster Formation in Fe-18Cr ODS Ferritic Steel by Atom Probe Tomography

Published online by Cambridge University Press:  01 February 2011

Olena Kalokhtina
Affiliation:, GPM-UMR CNRS6634- Université et Insa de Rouen, Saint Etienne du Rouvray, France
Bertrand Radiguet
Affiliation:, GPM-UMR CNRS6634- Université et Insa de Rouen, Saint Etienne du Rouvray, France
Yann de Carlan
Affiliation:, CEA,DEN,DMN,SRMA, Saclay, France
Philippe Pareige
Affiliation:, GPM-UMR CNRS6634- Université et Insa de Rouen, Saint Etienne du Rouvray, France
Get access


A high chromium ferritic Oxide Dispersion Strengthened steel was produced by mechanical alloying of Fe-18Cr-1W-0.3Ti-0.3Ni-0.15Si and 0.5% Y2O3 (wt.%) powders in industrial attritor, followed by hot extrusion at 1100°C. The material was characterized by Atom Probe Tomography on each step of manufacturing process: as-milled powder and in final hot extruded state. In addition, to get information on clustering kinetics the powder was also characterized after annealing at 850°C during 1 hour. Atom Probe Tomography revealed that the oxide dispersion strengthened steel Fe-18Cr contains nanometer scale yttrium- and oxygen-enriched nanoclusters in as-milled state. Their evolution is shown after subsequent annealing and hot extrusion. More well defined nanophases also enriched in Ti are observed. A mechanism of their formation is proposed. Mechanical alloying results in supersaturated solid solution with presence of small Y- and O-enriched clusters. Subsequent annealing stimulates incorporation of Ti to the nucleii that were previously formed during mechanical alloying.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1 Garner, F.A. Toloczko, M.B. Senser, B.H. J. Nucl. Mater., 276 (2000), p. 123.CrossRefGoogle Scholar
2 Fisher, J.J. ODS Alloys for Use in Breeder Reactors, USPTO, USA (1978).Google Scholar
3 Nanstad, R.K. McClintock, D.A. Hoelzer, D.T. Tan, L. Allen, T.R. J. Nucl. Mater (2009) p. 33 Google Scholar
4 Asano, K. Kohno, Y. Kohyama, A. Suzuki, T. Kusanagi, H. J. Nucl. Mater. (1988) p. 928 CrossRefGoogle Scholar
5 Pareige, P. Miller, M.K. Stoller, R.E. Hoelzer, D.T. Cadel, E. Radiguet, B. J. Nucl. Mater. (2007), p. 136 CrossRefGoogle Scholar
6 Sagaradze, V. V., Shalaev, V.I., Arbuzov, V.L., Goshchitskii, B.N., Tian, Y., Qun, W., Jiguang, S. J. Nucl. Mater. (2002).Google Scholar
7 Miller, M. K. Kenik, E. A. Russell, K. F. Heatherly, L. Hoelzer, D. T. Maziasz, P. J. Mat. Sc. and Eng., (2003) p. 140 CrossRefGoogle Scholar
8 Okuda, T. and Fujiwara, M. J. Mater. Sci. Lett. 14, (1995) p. 1600.CrossRefGoogle Scholar
9 Ukai, S. Nishida, T. and Okada, H. J. Nucl. Sci. Technol. (1997) p. 256 Google Scholar
10 Ukai, S. Nishida, T. Okuda, T. and Yoshitake, T. J. Nucl. Mater., 258–263, (1998) p. 1745.CrossRefGoogle Scholar
11 Alinger, M.J. Odette, G.R. and Hoelzer, D.T. J. Nucl. Mater., 329–333, (2004) p. 382.CrossRefGoogle Scholar
12 Ukai, S. and Ohtsuka, S. Energy Mater. 2 (2007) p. 26.CrossRefGoogle Scholar
13 Ukai, S. et al. , J. Nucl. Mater., 204 (1993) p. 74.CrossRefGoogle Scholar
14 Ukai, S. and Fujiwara, M. J. Nucl. Mater., 307–311 (2002), p. 749.CrossRefGoogle Scholar
15 Miller, M.K. Fu, C.L. Krcmar, M. Hoelzer, D.T. Liu, C.T., Front. Mater. Sci. (2009). p. 9.CrossRefGoogle Scholar
16 Ratti, M. Leuvrey, D. Mathon, M.H. Carlan, Y. de. J. Nucl. Mater 386–388 (2009), p. 540.CrossRefGoogle Scholar
17 Sakasegawa, H. Chaffron, L. Legendre, F. Boulanger, L. Cozzika, T. Brocq, M. Carlan, Y. de. J. Nucl. Mater 384 (2009), p. 117.CrossRefGoogle Scholar
18 Miller, M.K. Hoelzer, D.T. Kenik, E.A. et al. J. Nucl. Mater. 329–333 (2004).Google Scholar
19 Goshchitskii, B. N. Sagaradze, V. V. Shalaev, V. I. et al. J. Nucl. Mater (2002). p. 783.CrossRefGoogle Scholar
20 Klimiankou, M. Lindau, R. and Moslang, A. J Nucl Mater 329–333 (2004). p. 347.CrossRefGoogle Scholar
21 Hoelzer, D.T. Bentley, J. Sokolov, M.A. Miller, M.K. Odette, G.R. and Alinger, M.J. J. Nucl. Mater. 367–370 (2007), p. 166.CrossRefGoogle Scholar
22 Deconihout, B. Chamberland, S. and Blavette, D. Adv Mater 6 (1994), p. 695.CrossRefGoogle Scholar
23 Miller, M.K. Atom probe tomography. Analysis at the atomic level. New York, 2000.CrossRefGoogle Scholar
24 Cerezo, A. Clifton, P. H. Galtrey, M. J. Humphreys, C., Kelly, T. Larson, D. Materials Today (2007), p. 26.Google Scholar
25 Brocq, M. Radiguet, B. Poissonnet, S. Cuvilly, F. Pareige, P. Legendre, F. (in press).Google Scholar
26 Miller, M.K. Russell, K.F.. Ultramicroscopy 107 (2007).CrossRefGoogle Scholar
27 Blavette, D. Bostel, A. Sarrau, J.M. Deconihout, B. Menand, A. Nature 363 (1993).CrossRefGoogle Scholar
28 Gault, B. Vurpillot, F. Vella, A. Gilbert, M. Menand, A. Blavette, D. Deconihout, B.. Rev. Sci. Instrum. 77 (2006).10.1063/1.2194089CrossRefGoogle Scholar
29 Bas, P. Bostel, A. Deconihout, B. Blavette, D. et al. Applied Surface Science (1995), p. 298.CrossRefGoogle Scholar
30 Danoix, F., Grancher, G., Bostel, A., Blavette, D. Ultramicroscopy (2007), p. 739.Google Scholar
31 Thuvander, M. Andrén, H.O., Stiller, K. and Hu, Q. H.. Ultramicroscopy (1998), p. 279.Google Scholar
32 Marquis, E. A. Applied Physics letters 93, (2008).CrossRefGoogle Scholar
33 Marquis, E. A. Vurpillot, F.. Microscopy and Microanalysis (2008), p. 561.CrossRefGoogle Scholar
34 Blavette, D. Vurpillot, F. Pareige, P. Menand, A.. Ultramicroscopy 89 (2001), p. 145.CrossRefGoogle Scholar
35 Miller, M. K. Kenik, E. A. Russell, K. F. Heatherly, L. Mat. Sc. and Eng. (2003), p. 140.CrossRefGoogle Scholar
36 Fu, C.L. Krcmar, M. Painter, G.S. X. Physical review letters 99 (2007).Google Scholar
37 Soni, P.R. Mechanical alloying. Fundamentals and application, England, 2000.Google Scholar
38 Toualbi, L. Ratti, M. G.André, Onimus, F. Malaplate, J. Carlan, Y. de, Proceedings of the 14th International Conference on Fusion Reactor Materials, 2009.Google Scholar
39 Kimura, Y. Takaki, S. Suejima, S. Uemor, R. and Tamehiro, H. ISIJ Int 39 (1999), p. 176.CrossRefGoogle Scholar