Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-qq8pn Total loading time: 0.267 Render date: 2021-06-22T19:46:08.015Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Study of Gold Thin Films Evaporated on Polyethylene Naphthalate Films toward the Fabrication of Quantum Cross Devices

Published online by Cambridge University Press:  01 February 2011

Hideo Kaiju
Affiliation:
kaiju@es.hokudai.ac.jp, Research Institute for Electronic Science, Hokkaido University, Laboratory of Quantum Electronics, Kita 12 Nishi 6, Sapporo, 060-0812, Japan, +81-11-706-2878, +81-11-706-2883
Akito Ono
Affiliation:
aono@es.hokudai.ac.jp, Research Institute for Electronic Science, Hokkaido University, Laboratory of Quantum Electronics, Sapporo, 060-0812, Japan
Nobuyoshi Kawaguchi
Affiliation:
nkawa@es.hokudai.ac.jp, Research Institute for Electronic Science, Hokkaido University, Laboratory of Quantum Electronics, Sapporo, 060-0812, Japan
Kenji Kondo
Affiliation:
kkondo@es.hokudai.ac.jp, Research Institute for Electronic Science, Hokkaido University, Laboratory of Quantum Electronics, Sapporo, 060-0812, Japan
Akira Ishibashi
Affiliation:
i-akira@es.hokudai.ac.jp, Research Institute for Electronic Science, Hokkaido University, Laboratory of Quantum Electronics, Sapporo, 060-0812, Japan
Get access

Abstract

Molecular electronics devices continue to be pursued as a technology that offers the prospect of scaling device dimensions down to a few nanometers and also promote a practical introduction for high-density memory applications. One of several molecular devices is a cross-bar memory device fabricated by nanoimprint lithography process, which has achieved the production of 30-nm half-pitch patterning. However, today's production procedures such as nanoimprint lithography, optical lithography, and electron-beam lithography, do not allow for the resolution to achieve sub-10-nm line-width structures. Recently we have proposed a double nano-“baumkuchen” (DNB) structure, composed of two thin slices of alternating metal/insulator nano-“baumkuchen” as a lithography-free nano-structure fabrication technology. The DNB has potential application in a high-density memory device, the cross point of which can scale down to ultimately a few nanometers feature sizes because the pattering resolution is determined by the metal-deposition rate, ranging from 0.01 nm/s to the order of 0.1 nm/s. One element of the DNB structure is called a quantum cross (QC) device that consists of two metal nano-ribbons having edge-to-edge configuration. In the area of edge-to-edge QC devices there has been no experimental reports, meanwhile face-to-face devices such as cross-bar devices and spin tunneling devices, have been widely studied both theoretically and experimentally. In our present work, as the first experimental attempt toward the fabrication of QC devices, we have studied gold thin films evaporated on polyethylene naphtalate (PEN) organic films, which can be a candidate of metal/insulator part used for QC devices, by using the atomic force microscope (AFM). Au thin films were thermally evaporated on PEN films in the high vacuum chamber including the film-rolled-up system. The Au thickness was measured by a mechanical method using the stylus surface profiler and an optical method using the diode pumped solid state (DPSS) green laser. Surface morphologies of Au thin films on PEN films were analyzed by the AFM at room temperature. As the thickness of Au films evaporated on PEN films decreases from 20 nm to 5 nm, the AFM surface roughness is reduced from 4.8 nm down to 1.5 nm in the scanning area of 500~500 nm2. The Au grain size is 28.0-4.6 nm for 5-nm-thick Au films and 45.8-5.8 nm for 10-nm-thick Au films, respectively. As a result of the scaling investigation of the surface roughness, the surface roughness of 5-nm-thick Au films is 0.22 nm, corresponding to one atomic size, in the scanning scale of 5 nm. These experimental results indicate that Au thin films on PEN films are suitable as a candidate of metal/insulator(organic films) hybrid materials used for QC devices, and may open up a noble research field to clarify the electric characterization of QC devices using a few atoms or molecules leading to high-density memories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Chen, J., Reed, M. A., Rawlett, A. M., and Tour, J. M., Science 286, 1550 (1999).CrossRefGoogle Scholar
2. Chen, Y., Ohlberg, D. A. A., Li, X., Stewart, D. R., Williams, R. S., Jeppesen, J. O., Nielsen, K. A., Stoddard, J. F., Olynick, D. L., and Anderson, R., Appl. Phys. Lett. 82, 1610 (2003).CrossRefGoogle Scholar
3. Wu, W., Jung, G.-Y., Olynick, D. L., Straznicky, J., Li, Z., Li, X., Ohlberg, D. A. A., Chen, Y., Wang, S. –Y., Liddle, J. A., Tong, W. M., Williams, R. S., Appl. Phys. A 80, 1173 (2005).CrossRefGoogle Scholar
4. Jung, G. Y., Wu, W., Ganapathiappan, S., Ohlberg, D. A. A., Saifislam, M., Li, X., Olynick, D. L., Lee, H., Chen, Y., Wang, S. Y., Tong, W. M., Williams, R. S., Appl. Phys. A 81, 1331 (2005).Google Scholar
5. Rothschild, M., Bloomstein, T. M., Efremow, N. Jr, Fedynyshyn, T. H., Fritze, M., Pottebaum, I., and Switkes, M., MRS Bulletin 30, 942 (2005).CrossRefGoogle Scholar
6. Fritze, M., Bloomstein, T. M., Tyrrell, B., and Rothschild, M., Solid State Tech. 49, 41 (2006).Google Scholar
7. Roberts, J., Bacuita, T., Bristol, R. L., Cao, H., Chandhok, M., Lee, S. H., Leeson, M., Liang, T., Panning, E., Rice, B. J., Shah, U., Shell, M., Yueh, W., and Zhang, G. J., Microelectron. Eng. 83, 672 (2006).CrossRefGoogle Scholar
8. Silverman, P. J., J. Microlith., Microfab., Microsyst. 4, 011006 (2005).Google Scholar
9. Ishibashi, A., Proc. Int. Symp. on Nano Science and Technology, 44 (2004).Google Scholar
10. Kaiju, H., Ono, A., Kawaguchi, N., and Ishibashi, A., Jpn. J. Appl. Phys. 47, 244 (2008).CrossRefGoogle Scholar
11. Ishibashi, A., Kaiju, H., Yamagata, Y., and Kawaguchi, N., Electron. Lett. 41, 735 (2005).CrossRefGoogle Scholar
12. Kaiju, H., Kawaguchi, N., and Ishibashi, A., Rev. Sci. Instrum. 76, 085111 (2005).Google Scholar
13. Kondo, K. and Ishibashi, A.: Jpn. J. Appl. Phys. 45, 9137 (2006).CrossRefGoogle Scholar
14. Kaiju, H., Kondo, K., and Ishibashi, A.: Mater. Res. Soc. Symp. Proc. 961, O5.5.1 (2007).Google Scholar
15. Bhushan, B., Ma, T., and Higashioji, T., J. Appl. Polym. Sci. 83, 2225 (2002).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of Gold Thin Films Evaporated on Polyethylene Naphthalate Films toward the Fabrication of Quantum Cross Devices
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study of Gold Thin Films Evaporated on Polyethylene Naphthalate Films toward the Fabrication of Quantum Cross Devices
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study of Gold Thin Films Evaporated on Polyethylene Naphthalate Films toward the Fabrication of Quantum Cross Devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *