Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-z5d2w Total loading time: 0.263 Render date: 2021-12-03T08:15:32.785Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Studies on Curvature Deformation Control of Bilayer Cantilever Fabricated by Surface Micromachining of SOI Wafer

Published online by Cambridge University Press:  26 February 2011

Yu-Ming Huang
Affiliation:
huangs@semi.ee.es.osaka-u.ac.jp, Grad. School of Eng. Sci., Osaka Univ., Dept. of Systems Innnovation, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
Masayuki Sohgawa
Affiliation:
sam@semi.ee.es.osaka-u.ac.jp, Grad. School of Eng. Sci., Osaka Univ., Dept. of Systems Innnovation, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
Minoru Noda
Affiliation:
noda@ee.es.osaka-u.ac.jp, Grad. School of Eng. Sci., Osaka Univ., Dept. of Systems Innnovation, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
Kaoru Yamashita
Affiliation:
yamashita@ee.es.osaka-u.ac.jp, Grad. School of Eng. Sci., Osaka Univ., Dept. of Systems Innnovation, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
Masanori Okuyama
Affiliation:
okuyama@ee.es.osaka-u.ac.jp, Grad. School of Eng. Sci., Osaka Univ., Dept. of Systems Innnovation, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
Haruo Noma
Affiliation:
noma@atr.jp, ATR, Knowledge Science Lab., 2-2-2- Hikari-dai, Seika, Souraku, Kyoto, 619-0288 Japan
Get access

Abstract

The Cr/Si bilayer cantilevers for an integrated multi-axis tactile sensor were fabricated by Si surface micromachining process. Among the cantilevers with various shapes, the rectangular and semicircular cantilevers can be deflected upward with good controllability. The maximum deflections are compared with those calculated by finite element method. Calculated deflections of Cr/Si cantilever agree considerably with the measured one. So, it is considered that the analysis by finite element method is useful as optimization of layer thickness and size to obtain the Cr/Si bilayer cantilevers with accurate deflection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hou, M. T. and Chen, R., J. Micromech. Microeng. 13, 141 (2003)CrossRefGoogle Scholar
2. Hou, M. T. and Chen, R., J. Micromech. Microeng. 14, 490 (2004).CrossRefGoogle Scholar
3. Linnemann, R., Gotszalk, T., Hadjiiski, L. and Rangelow, I. W., Thin Solid Films 264, 159 (1995).CrossRefGoogle Scholar
4. Kolesar, E. S., Allen, P. B., Howard, J. T., Wilken, J. M. and Boydston, N., Thin Solid Films 355–356, 295 (1999).CrossRefGoogle Scholar
5. Hamaguchi, H., Sugano, K., Tsuchiya, T. and Tabata, O., Proc. of 23rd Sensor Symposium, 471 (2006).Google Scholar
6. Chatzandroulis, S., Tserepi, A., Goustouridis, D., Normand, P., and Tsoukalas, D., Microelectro. Eng. 61–62, 955 (2002).CrossRefGoogle Scholar
7. Takagaki, T., Sun, Y. J., Brandt, O. and Ploog, K. H., App. Phys. Lett. 84, 4756 (2004).CrossRefGoogle Scholar
8. Noda, K., Hoshino, K., Matsumoto, K. and Shimoyama, I., 18th IEEE Int. conf. on Micro Electro Mechanical Systems, Miami, Florida, USA, 283 (January–February 2005).Google Scholar
9. Yoshida, S., Mizota, K. and Noma, H., Virtual Reality Society of Japan 11th Annual Conf., Sendai, Japan (September 2006).Google Scholar
10. Sohgawa, M., Noda, M., Huang, Y. M., Yamashita, K., Kanashima, T., Okuyama, M. and Noma, H., Proc. of 23rd Sensor Symposium, 165 (2006).Google Scholar
11.Rika Nenpyo”, edited by National Astronomical Observatory of Japan (Maruzen, 2000).Google Scholar
12. Petersen, K. E. and Guarnieri, C. R., J. Appl. Phys. 50, 6761 (2006).CrossRefGoogle Scholar
13. Kim, J., Varadan, V. V. and Varadan, V. K., Int. J. Numer. Methods Eng. 40, 817 (1997).3.0.CO;2-B>CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Studies on Curvature Deformation Control of Bilayer Cantilever Fabricated by Surface Micromachining of SOI Wafer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Studies on Curvature Deformation Control of Bilayer Cantilever Fabricated by Surface Micromachining of SOI Wafer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Studies on Curvature Deformation Control of Bilayer Cantilever Fabricated by Surface Micromachining of SOI Wafer
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *